福建省莆田市第八中学2026届数学高二上期末调研模拟试题含解析_第1页
福建省莆田市第八中学2026届数学高二上期末调研模拟试题含解析_第2页
福建省莆田市第八中学2026届数学高二上期末调研模拟试题含解析_第3页
福建省莆田市第八中学2026届数学高二上期末调研模拟试题含解析_第4页
福建省莆田市第八中学2026届数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省莆田市第八中学2026届数学高二上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.2.已知是虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.抛物线的准线方程为()A. B.C. D.4.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.5.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.6.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.7.若直线:与:互相平行,则a的值是()A. B.2C.或2 D.3或8.直线的倾斜角为()A.0 B.C. D.9.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A B.C. D.10.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,,,,分别是大星中心点与四颗小星中心点的联结线,,则第三颗小星的一条边AB所在直线的倾斜角约为()A. B.C. D.11.数列中,,,则()A.32 B.62C.63 D.6412.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____14.已知抛物线:()的焦点到准线的距离为4,过点的直线与抛物线交于,两点,若,则______15.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有个点,相应的图案中点的个数记为,按此规律,则___________,___________.16.已知椭圆:的左右焦点分别为,为椭圆上的一点,与椭圆交于.若△的内切圆与线段在其中点处相切,与切于,则椭圆的离心率为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某双曲线型自然冷却通风塔的外形是由图1中的双曲线的一部分绕其虚轴所在的直线旋转一周所形成的曲面,如图2所示.双曲线的左、右顶点分别为、.已知该冷却通风塔的最窄处是圆O,其半径为1;上口为圆,其半径为;下口为圆,其半径为;高(即圆与所在平面间的距离)为.(1)求此双曲线的方程;(2)以原平面直角坐标系的基础上,保持原点和x轴、y轴不变,建立空间直角坐标系,如图3所示.在上口圆上任取一点,在下口圆上任取一点.请给出、的值,并求出与的值;(3)在(2)的条件下,是否存在点P、Q,使得P、A、Q三点共线.若不存在,请说明理由;若存在,求出点P、Q的坐标,并证明此时线段PQ上任意一点都在曲面上.18.(12分)已知是公差不为零的等差数列,,且,,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和19.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)20.(12分)已知数列的前n项和为,,且.(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个公差为的等差数列,求证:.21.(12分)已知等差数列满足:,,数列的前n项和为(1)求及;(2)设是首项为1,公比为3的等比数列,求数列的前项和22.(10分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.2、D【解析】根据复数的几何意义即可确定复数所在象限【详解】复数在复平面内对应的点为则复数在复平面内对应的点位于第四象限故选:D3、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.4、C【解析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.5、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D6、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.7、A【解析】根据直线:与:互相平行,由求解.【详解】因为直线:与:互相平行,所以,即,解得或,当时,直线:,:,互相平行;当时,直线:,:,重合;所以,故选:A8、D【解析】根据斜率与倾斜角的关系求解即可.【详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.9、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.10、C【解析】由五角星的内角为,可知,又平分第三颗小星的一个角,过作轴平行线,则,即可求出直线的倾斜角.【详解】都为五角星的中心点,平分第三颗小星的一个角,又五角星的内角为,可知,过作轴平行线,则,所以直线的倾斜角为,故选:C【点睛】关键点点睛:本题考查直线倾斜角,解题的关键是通过做辅助线找到直线的倾斜角,通过几何关系求出倾斜角,考查学生的数形结合思想,属于基础题.11、C【解析】把化成,故可得为等比数列,从而得到的值.【详解】数列中,,故,因为,故,故,所以,所以为等比数列,公比为,首项为.所以即,故,故选C.【点睛】给定数列的递推关系,我们常需要对其做变形构建新数列(新数列的通项容易求得),常见的递推关系和变形方法如下:(1),取倒数变形为;(2),变形为,也可以变形为;12、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知求得母线长,代入圆锥侧面积公式求解【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π故答案为2π【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.14、15【解析】易得抛物线方程为,根据,求得点P的坐标,进而得到直线l的方程,与抛物线方程联立,再利用抛物线定义求解.【详解】解:因为抛物线的焦点到准线的距离为4,所以,则抛物线:,设点的坐标为,的坐标为,因为,所以,则,则,所以直线的方程为,代入抛物线方程可得,故,则,所以故答案为:1515、①.②.【解析】利用题中所给规律求出即可.【详解】解:由图可知,,,,,因为符合等差数列的定义且公差为所以,所以,故答案为:,.16、【解析】利用椭圆及三角形内切圆的性质可得、,结合等边三角形的性质得的大小,在△中应用余弦定理得到a、c的齐次式,即可求离心率.【详解】由题意知:由内切圆的性质得:,由椭圆的性质,而,∴,∴由内切圆的性质得:再由椭圆的性质,得:,由此,△为等边三角形,可得,在△中,由余弦定理得:,解得,则,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),,,;(3)存在,或,证明见解析.【解析】(1)设双曲线的标准方程为,易知,设,,代入求解即可;(2)分析圆,圆的方程即可求解;(3)利用圆的参数方程,设,,利用,即可求解,再利用线段PQ上任意一点的特征证明点在曲面上;【小问1详解】设双曲线的标准方程为,由题意知,点,的横坐标分别为,,则设点,的坐标为,,,,,解得,,又塔高米,,解得,故所求的双曲线的方程为【小问2详解】点在圆上,;点在圆上,;圆,其半径为,;圆,其半径为,【小问3详解】存在点P、Q,使得P、A、Q三点共线.由点在半径为的圆上,(为参数);点在半径为的圆上,(为参数);由已知得,整理得两式平方求和得,则或当时,,当时,证明:,则,利用,,其中又曲面上的每一点可以是圆与旋转任意坐标系上的双曲线的交点,旋转直角坐标系,保持原点和y轴不变,点所在的轴为轴,此时,满足,即即点是曲面上的点.18、(1);(2)【解析】(1)由等差数列以及等比中项的公式代入联立求解出,再利用等差数列的通项公式即可求得答案;(2)利用分组求和法,根据求和公式分别求出等差数列与等比数列的前项和再相加即可.【详解】(1)由题意,,,即,联立解得,所以数列的通项公式为;(2)由(1)得,,所以【点睛】关于数列前项和的求和方法:分组求和法:两个数列等差或者等比数列相加时利用分组求和法计算;裂项相加法:数列的通项公式为分式时可考虑裂项相消法求和;错位相减法:等差乘以等比数列的情况利用错位相减法求和.19、答案见解析【解析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.20、(1)(2)证明见解析【解析】(1)根据作差即可得到是以为首项,为公比的等比数列,从而得到数列的通项公式;(2)由(1)可知,,根据等差数列的通项公式得到,即可得到,再令,利用错位相减法求出,即可得证;【小问1详解】解:因为,且,当时,则,所以,当时,,则,即,所以是以为首项,为公比的等比数列,所以;【小问2详解】解:由(1)可知,,因为,所以,所以,令,则,所以,所以,即,所以,即;21、(1);(2)【解析】(1)先根据已知求出,再求及.(2)先根据已知得到,再利用分组求和求数列的前项和.【详解】(1)设等差数列的公差为d,因为,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【点睛】(1)本题主要考查等差数列的通项和前n项和求法,考查分组求和和等比数列的求和公式,意在考查学生对这些知识的掌握水平和计算推理能力.(2)有一类数列,它既不是等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论