版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市2026届高二上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某市物价部门对5家商场的某商品一天的销售量及其售价进行调查,5家商场的售价(元)和销售量(件)之间的一组数据如表所示.按公式计算,与的回归直线方程是,则下列说法错误的是()售价99.51010.511销售量1110865A.B.售价变量每增加1个单位时,销售变量大约减少3.2个单位C.当时,的估计值为12.8D.销售量与售价成正相关2.已知关于x的不等式的解集为空集,则的最小值为()A. B.2C. D.43.记不超过x的最大整数为,如,.已知数列的通项公式,则使的正整数n的最大值为()A.5 B.6C.15 D.164.已知点A、是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为3,则()A.3 B.4C.6 D.85.高中生在假期参加志愿者活动,既能服务社会又能锻炼能力.某同学计划在福利院、社区、图书馆和医院中任选两个单位参加志愿者活动,则参加图书馆活动的概率为()A. B.C. D.6.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,第五层有15个球,…,各层球数之差:,,,,…即2,3,4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为()A.51 B.68C.106 D.1577.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.8.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B.C. D.9.2019年湖南等8省公布了高考改革综合方案将采取“”模式即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在思想政治、地理、化学、生物中选择2门,一名同学随机选择3门功课,则该同学选到历史、地理两门功课的概率为()A. B.C. D.10.已知命题是真命题,那么的取值范围是()A. B.C. D.11.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.12.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知原命题为“若,则”,则它的逆否命题是__________(填写”真命题”或”假命题”)14.各项均为正数的等比数列的前n项和为,满足,,则___________.15.根据如下样本数据34567402.5-0.50.5-2得到的回归方程为若,则的值为___________.16.椭圆上一点到两个焦点的距离之和等于,则的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公差不为零的等差数列中,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.18.(12分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由19.(12分)记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.20.(12分)在中,角A,B,C的对边分别是a,b,c,且.(1)求角B的大小;(2)若,,且,求a.21.(12分)已知点和圆.(1)求圆的圆心坐标和半径;(2)设为圆上的点,求的取值范围.22.(10分)已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】首先求出、,再根据回归直线方程必过样本中心点,即可求出,再根据回归直线方程的性质一一判断即可;【详解】解:因为,,与回归直线方程,恒过定点,,解得,故A正确,所以回归直线方程为,即售价变量每增加1个单位时,销售变量大约减少3.2个单位,故B正确;当时,即当时,的估计值为12.8,故C正确;因为回归直线方程为,所以销售量与售价成负相关,故D错误;故选:D2、D【解析】根据一元二次不等式的解集的情况得出二次项系数大于零,根的判别式小于零,可得出,再将化为,由和均值不等式可求得最小值.【详解】由题意可得:,,可以得到,而,可以令,则有,当且仅当取等号,所以的最小值为4.故答案为:4.【点睛】本题主要考查均值不等式,关键在于由一元二次不等式的解集的情况得出的关系,再将所求的式子运用不等式的性质降低元的个数,运用均值不等式,是中档题.3、C【解析】根据取整函数的定义,可求出的值,即可得到答案;【详解】,,,,,,当时,,使的正整数n的最大值为,故选:C4、D【解析】直接根据抛物线焦点弦长公式以及中点坐标公式求结果【详解】设,,则的中点到轴的距离为,则故选:D5、D【解析】对4个单位分别编号,利用列举法求出概率作答.【详解】记福利院、社区、图书馆和医院分别为A,B,C,D,从4个单位中任选两个的试验有AB,AC,AD,BC,BD,CD,共6个基本事件,它们等可能,其中有参加图书馆活动的事件有AC,BC,CD,共3个基本事件,所以参加图书馆活动的概率.故选:D6、C【解析】对高阶等差数列按其定义逐一进行构造数列,直到出现一般等差数列为止,再根据其递推关系进行求解.【详解】现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,各项与前一项之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差数列,所以,故选:C7、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A8、C【解析】设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立故选:C【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值9、A【解析】先由列举法计算出基本事件的总数,然后再求出该同学选到历史、地理两门功课的基本事件的个数,基本事件个数比即为所求概率.【详解】由题意,记物理、历史分别为、,从中选择1门;记思想政治、地理、化学、生物为、、、,从中选择2门;则该同学随机选择3门功课,所包含的基本事件有:,,,,,,,,,,,,共个基本事件;该同学选到历史、地理两门功课所包含的基本事件有:,,共个基本事件;该同学选到物理、地理两门功课的概率为.故选:A.【点睛】本题考查求古典概型的概率,属于基础题型.10、C【解析】依据题意列出关于的不等式,即可求得的取值范围.【详解】当时,仅当时成立,不符合题意;当时,若成立,则,解之得综上,取值范围是故选:C11、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B12、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、真命题【解析】先判断原命题的真假,再由逆否命题与原命题是等价命题判断.【详解】因为命题“若,则”是真命题,且逆否命题与原命题是等价命题,所以它的逆否命题是真命题,故答案为:真命题14、【解析】利用等比数列的通项公式和前项和公式,即可得到答案.【详解】由题意各项均为正数的等比数列得:,故答案为:15、-1.4##【解析】分别求出的值,即得到样本中心点,根据样本中心点一定在回归直线上,可求得答案.【详解】,则得到样本中心点为,因为样本中心点一定在回归直线上,故,解得,故答案为:16、【解析】根据椭圆定义求出其长半轴长,再结合焦点坐标即可计算作答.【详解】因椭圆上一点到两个焦点的距离之和等于,则该椭圆长半轴长,而半焦距,于是得短半轴长b,有,所以的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(Ⅰ)将数列中的项用和表示,根据等比数列的性质可得到关于的一元二次方程可求得的值,即可得到数列的通项公式;(Ⅱ)根据(Ⅰ)可求得的通项公式,用分组求和法可得其前项和.试题解析:(Ⅰ)设等差数列的公差为,因,且,,成等比数列,即,,成等比数列,所以有,即,解得或(舍去),所以,,数列的通项公式为.(Ⅱ)由(Ⅰ)知,所以.点睛:本题主要考查了等差数列,等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于,其中为等差数列,为等比数列等.18、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解;(2)由,可得,令,,,,利用导数法求解.【小问1详解】解:,所以k=f′(0)=-a=0,所以a=0;【小问2详解】由,可得,令,,所以,①当时,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=0,所以g(x)在上无零点;②当时,令,所以h′(x)=2cosxex<0,即h(x)在上单调递减,又因为,h(π)=-eπ-1<0,所以存在,,所以g(x)在上单调递增,在上单调递减,因为,g(π)=-π<0,所以g(x)在上且只有一个零点;综上所述:f(x)在(0,π)上有且只有一个零点19、(1)(2)4【解析】(1)根据题意得,解方程得,进而得通项公式;(2)由题知,进而解不等式得或,再根据即可得答案.【小问1详解】设等差数列的公差为,由得=0,由题意知,,解得,所以d=2所以.小问2详解】解:由(1)可得,由可得,即,解得或,因为,所以,正整数的最小值为.20、(1);(2).【解析】(1)根据已知条件,运用余弦定理化简可求出;(2)由可求出,利用诱导公式和两角和的正弦公式求出,再利用正弦定理即求.【小问1详解】)∵且,∴,∴,∴,∵,∴.【小问2详解】∵,∴,∴,∵,∴,∵,∴,又∵,,,∴.21、(1)圆心的坐标为,半径;(2)【解析】(1)利用配方法化圆的一般方程为标准方程,可得圆心坐标与半径;(2)由两点间的距离公式求得,得到与,则的取值范围可求【小问1详解】解:由,得,圆心的坐标为,半径;【小问2详解】解:,,,,的取值范围是22、(1);(2)存在,最大距离为.,理由见解析【解析】(1)根据离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026福建泉州市面向南开大学选优生选拔引进备考题库附答案
- 2025河北交投物流有限公司招聘社会人员8人备考题库必考题
- 2026湖北省定向上海交通大学选调生招录参考题库必考题
- 2026年乌鲁木齐市第七十中学会展校区(152中)高中部教师补招参考题库必考题
- 2025广西华盛集团新桥农工商有限责任公司招聘7人备考题库附答案
- 三基护理理论常见问题解答
- 2025年唐山市丰南区法院系统招聘真题
- 2025年丽江市古城区网格员招聘考试真题
- 2026中国科学院遗传与发育生物学研究所杨宝军研究组招聘1人备考题库有完整答案详解
- 2026广东深圳市公安局招聘750人备考题库有答案详解
- 2025年本科院校图书馆招聘面试题
- 电子商务毕业论文5000
- 2025-2026学年人教版(2024)初中生物八年级上册教学计划及进度表
- 医疗卫生舆情课件模板
- 高压注浆施工方案(3篇)
- 高强混凝土知识培训课件
- (高清版)DB11∕T 1455-2025 电动汽车充电基础设施规划设计标准
- 暖通工程施工环保措施
- 宗族团年活动方案
- 2025至2030中国碳纳米管行业市场发展分析及风险与对策报告
- 车企核心用户(KOC)分层运营指南
评论
0/150
提交评论