2026届上海市徐汇区上海第四中学高一上数学期末学业水平测试模拟试题含解析_第1页
2026届上海市徐汇区上海第四中学高一上数学期末学业水平测试模拟试题含解析_第2页
2026届上海市徐汇区上海第四中学高一上数学期末学业水平测试模拟试题含解析_第3页
2026届上海市徐汇区上海第四中学高一上数学期末学业水平测试模拟试题含解析_第4页
2026届上海市徐汇区上海第四中学高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届上海市徐汇区上海第四中学高一上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.2.,,则p是q的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.“对任意,都有”的否定形式为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得4.已知函数有唯一零点,则负实数()A. B.C.-3 D.-25.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.6.已知平面直角坐标系中,点,,,、、,,是线段AB的九等分点,则()A.45 B.50C.90 D.1007.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.8.半径为2的扇形OAB中,已知弦AB的长为2,则的长为A. B.C. D.9.设函数若是奇函数,则()A. B.C. D.110.若点和都在直线上,又点和点,则A.点和都不直线上 B.点和都在直线上C.点直线上且不在直线上 D.点不在直线上且在直线上二、填空题:本大题共6小题,每小题5分,共30分。11.无论实数k取何值,直线kx-y+2+2k=0恒过定点__12.给出如下五个结论:①存在使②函数是偶函数③最小正周期为④若是第一象限的角,且,则⑤函数的图象关于点对称其中正确结论序号为______________13.若,且α为第一象限角,则___________.14.已知幂函数y=xα的图象过点(4,),则α=__________.15.已知向量,且,则_______.16.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求经过点和,圆心在轴上的圆的方程.18.已知实数是定义在上的奇函数.(1)求的值;(2)求函数的值域;(3)当时,恒成立,求实数的取值范围.19.已知,,,,求.20.已知正方体ABCD-的棱长为2.(1)求三棱锥的体积;(2)证明:.21.已知函数f(x)=+ln(5-x)的定义域为A,集合B={x|2x-a≥4}.(Ⅰ)当a=1时,求集合A∩B;(Ⅱ)若A∪B=B,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.2、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B3、D【解析】全称命题的否定是特称命题,据此得到答案.【详解】全称命题的否定是特称命题,则“对任意,都有”的否定形式为:存在,使得.故选:D.【点睛】本题考查了全称命题的否定,属于简单题.4、C【解析】注意到直线是和的对称轴,故是函数的对称轴,若函数有唯一零点,零点必在处取得,所以,又,解得.选C.5、B【解析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决6、B【解析】利用向量的加法以及数乘运算可得,再由向量模的坐标表示即可求解.【详解】,∴故选:B.7、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.8、C【解析】由已知可求圆心角的大小,根据弧长公式即可计算得解【详解】设扇形的弧长为l,圆心角大小为,∵半径为2的扇形OAB中,弦AB的长为2,∴,∴故选C【点睛】本题主要考查了弧长公式的应用,考查了数形结合思想的应用,属于基础题9、A【解析】先求出的值,再根据奇函数的性质,可得到的值,最后代入,可得到答案.【详解】∵奇函数故选:A【点睛】本题主要考查利用函数的奇偶性求值的问题,属于基础题.10、B【解析】由题意得:,易得点满足由方程组得,两式相加得,即点在直线上,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出无论实数k取何值,直线kx-y+2+2k=0恒过定点【详解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程组,得∴无论实数k取何值,直线kx-y+2+2k=0恒过定点故答案为:12、②③【解析】利用正弦函数的图像与性质,逐一判断即可.【详解】对于①,,,故错误;对于②,,显然为偶函数,故正确;对于③,∵y=sin(2x)的最小正周期为π,∴y=|sin(2x)|最小正周期为.故正确;对于④,令α,β,满足,但,故错误;对于⑤,令则故对称中心为,故错误.故答案为:②③【点睛】本题主要考查三角函数图象与性质,考查辅助角公式和诱导公式、正弦函数的图象的对称性和单调性,属于基础题13、【解析】先求得,进而可得结果.【详解】因为,又为第一象限角,所以,,故.故答案为:.14、【解析】把点的坐标代入幂函数解析式中即可求出.【详解】解:由幂函数的图象过点,所以,解得.故答案为:.15、2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.16、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、.【解析】根据条件得到,设圆心为,根据点点距列出式子即可,求得参数值解析:圆的圆心在轴上,设圆心为,由圆过点和,由可得,即,求得,可得圆心为,半径为,故圆的方程为.点睛:这个题目考查了圆的方程的求法,利用圆的定义得到圆上的点到圆心的距离相等,可列出式子.一般和圆有关的多数是利用圆的几何性质,垂径定理列出方程,利用切线的性质即切点和圆心的连线和切线垂直列式子.注意观察式子的特点18、(1);(2);(3).【解析】(1)由是定义在上的奇函数,利用可得的值;(2)化简利用指数函数的值域以及不等式的性质可得函数的值域;(3)应用参数分离可得利用换元法可得,,转化为,,转化为求最值即可求解.【详解】(1)因为是定义在上的奇函数,所以对于恒成立,所以,解得,当时,,此时,所以时,是奇函数.(2)由(1)可得,因为,可得,所以,所以,所以,所以函数的值域为;(3)由可得,即,可得对于恒成立,令,则,函数在区间单调递增,所以当时最大为,所以.所以实数的取值范围是.【点睛】方法点睛:求不等式恒成立问题常用分离参数法若不等式(是实参数)恒成立,将转化为或恒成立,进而转化为或,求的最值即可.19、【解析】由已知结合商数关系、平方关系求,根据的范围及平方关系求,最后由结合差角余弦公式求值即可.【详解】因为,所以,又,可得或,而,所以,由,且,解得,因为,,则,所以,所以.20、(1)(2)证明见解析【解析】(1)将问题转化为求即可;(2)根据线面垂直证明线线垂直.【小问1详解】在正方体ABCD-中,易知⊥平面ABD,∴.【小问2详解】证明:在正方体中,易知,∵⊥平面ABD,平面ABD,∴.又∵,、平面,∴BD⊥平面.又平面,∴21、(I);(II).【解析】(Ⅰ)可求出定义域,从而得出,并可求出集合,从而得出时的集合,然后进行交集的运算即可;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论