辽宁沈阳市第31中学2026届数学高二上期末质量跟踪监视模拟试题含解析_第1页
辽宁沈阳市第31中学2026届数学高二上期末质量跟踪监视模拟试题含解析_第2页
辽宁沈阳市第31中学2026届数学高二上期末质量跟踪监视模拟试题含解析_第3页
辽宁沈阳市第31中学2026届数学高二上期末质量跟踪监视模拟试题含解析_第4页
辽宁沈阳市第31中学2026届数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁沈阳市第31中学2026届数学高二上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角是A. B.C. D.2.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则()A.2192 B.C. D.3.我国古代数学名著《算法统宗》是明代数学家程大位(1533-1606年)所著.该书中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”.其意思是:“一座7层塔共挂了381盏灯,且下一层灯数是上一层的2倍,则可得塔的最顶层共有灯几盏?”.若改为“求塔的最底层几盏灯?”,则最底层有()盏.A.192 B.128C.3 D.14.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.5.若直线与直线垂直,则()A6 B.4C. D.6.已知等比数列的前n项和为,,,则()A. B.C. D.7.如图,把椭圆的长轴分成6等份,过每个分点作x轴的垂线交椭圆的上半部分于点,F是椭圆C的右焦点,则()A.20 B.C.36 D.308.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.119.函数在定义域上是增函数,则实数m的取值范围为()A. B.C. D.10.直线x+y﹣1=0被圆(x+1)2+y2=3截得的弦长等于()A. B.2C.2 D.411.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若018号被抽中,则下列编号也被抽中的是()A.076 B.122C.390 D.52212.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前n项和为,且满足通项公式,则________14.如图,已知椭圆+y2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,则点G横坐标的取值范围为________15.已知数列的前n项和,则其通项公式______16.平行六面体中,底面是边长为1的正方形,,则对角线的长度为___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示的四棱锥的底面是一个等腰梯形,,且,是△的中线,点E是棱的中点(1)证明:∥平面(2)若平面平面,且,求平面与平面夹角余弦值(3)在(2)条件下,求点D到平面的距离18.(12分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.19.(12分)经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到)(2)为保证在该时段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?20.(12分)已知椭圆的离心率为,椭圆的上顶点到焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆相交于、两点(、不是左、右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点.21.(12分)已知函数(1)求函数单调区间;(2)函数在区间上的最小值小于零,求a的取值范围22.(10分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由方程得到斜率,然后可得其倾斜角.【详解】因为直线的斜率为所以其倾斜角为故选:D2、D【解析】计算出每月应还的本金数,再计算第n个月已还多少本金,由此可计算出个月的还款金额.【详解】由题意可知:每月还本金为2000元,设张华第个月的还款金额为元,则,故选:D3、A【解析】根据题意,转化为等比数列,利用通项公式和求和公式进行求解.【详解】设这个塔顶层有盏灯,则问题等价于一个首项为,公比为2的等比数列的前7项和为381,所以,解得,所以这个塔的最底层有盏灯.故选:A.4、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D5、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.6、A【解析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【详解】设等比数列的公比为q,则,.故选:A.7、D【解析】由椭圆的对称性可知,,代入计算可得答案.【详解】设椭圆左焦点为,连接由椭圆的对称性可知,,所以.故选:D.8、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.9、A【解析】根据导数与单调性的关系即可求出【详解】依题可知,在上恒成立,即在上恒成立,所以故选:A10、B【解析】如图,圆(x+1)2+y2=3的圆心为M(−1,0),圆半径|AM|=,圆心M(−1,0)到直线x+y−1=0的距离:|,∴直线x+y−1=0被圆(x+1)2+y2=3截得的弦长:.故选B.点睛:本题考查圆的标准方程以及直线和圆的位置关系.判断直线与圆的位置关系一般有两种方法:1.代数法:将直线方程与圆方程联立方程组,再将二元方程组转化为一元二次方程,该方程解的情况即对应直线与圆的位置关系.这种方法具有一般性,适合于判断直线与圆锥曲线的位置关系,但是计算量较大.2.几何法:圆心到直线的距离与圆半径比较大小,即可判断直线与圆的位置关系.这种方法的特点是计算量较小.当直线与圆相交时,可利用垂径定理得出圆心到直线的距离,弦长和半径的勾股关系.11、B【解析】根据系统抽样的特点,写出组数与对应抽取编号的关系式,即可判断和选择.【详解】根据题意,780名公务员中,采用系统抽样的方法抽取30人,则需要分为组,每组人;设第组抽取的编号为,故可设,又第一组抽中号,故可得,解得故,当时,.故选:.12、B【解析】由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为,写出圆的标准方程,利用点在圆上,求得实数的值,利用点到直线的距离公式可求出圆心到直线的距离.【详解】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所以,圆心到直线的距离为.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由时,,可得,利用累乘法得,从而即可求解.【详解】因为,所以时,,即,化简得,又,所以,检验时也成立,所以,所以,故答案:.14、【解析】设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,求出线段的垂直平分线方程,可求得点的横坐标,利用不等式的基本性质可求得点的横坐标的取值范围.【详解】设直线的方程为,联立,整理可得,因为直线过椭圆的左焦点,所以方程有两个不相等的实根设点、,设的中点为,则,,直线的垂直平分线的方程为,令,则.因为,所以故点的横坐标的取值范围.故答案为:15、【解析】利用当时,,可求出此时的通项公式,验证n=1时是否适合,可得答案.【详解】当时,,当时,不适合上式,∴,故答案为:.16、2【解析】利用,两边平方后,利用向量数量积计算公式,计算得.【详解】对两边平方并化简得,故.【点睛】本小题主要考查空间向量的加法和减法运算,考查空间向量数量积的表示,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】(1)连接、,平行四边形的性质、线面平行的判定可得平面、平面,再根据面面平行的判定可得平面平面,利用面面平行的性质可证结论;(2)取的中点为,连接,证明出平面,,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值.(3)利用等体积法,求D到平面的距离【小问1详解】连接、,由、分别是棱、的中点,则,平面,平面,则平面又,且,∴且,四边形是平行四边形,则,平面,平面,则平面又,可得平面平面.又平面∴平面【小问2详解】由知:,又平面平面,平面平面,平面,∴平面取的中点为,连接、,由且,故四边形为平行四边形,故,则△为等边三角形,故,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立如图所示的空间直角坐标系易知,,所以、、、、,,,,设平面的法向量为,则,令,得设平面的法向量为,则,令,得设平面与平面所成的锐二面角为.则,即平面与平面所成锐二面角的余弦值为【小问3详解】由(2)知:平面,则是三棱锥的高且,四边形为平行四边形,又,即为菱形,∴,而,则,且,∴,故.又,由上易知:△为等腰三角形且,∴,则D到平面的距离.18、(1)单调递增区间为;单调减区间为和;(2);.【解析】(1)求出导函数,令,求出单调递增区间;令,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解.【详解】1函数的定义域是R,,令,解得令,解得或,所以的单调递增区间为,单调减区间为和;2由在单调递减,在单调递增,所以,而,,故最大值是.19、(1)当(千米/小时)时,车流量最大,最大值约为千辆/小时;(2)汽车的平均速度应控制在这个范围内(单位:千米/小时).【解析】(1)利用基本不等式可求得的最大值,及其对应的值,即可得出结论;(2)解不等式即可得解.【小问1详解】解:,(千辆/小时),当且仅当时,即当(千米/小时)时,车流量最大,最大值约为千辆/小时.【小问2详解】解:据题意有,即,即,解得,所以汽车的平均速度应控制在这个范围内(单位:千米/小时).20、(1);(2)证明见解析.【解析】(1)根据已知条件求出、、的值,可得出椭圆的标准方程;(2)设、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出关于、所满足的等式,然后化简直线的方程,即可求得直线所过定点的坐标.【小问1详解】解:椭圆上顶点到焦点距离,又椭圆离心率为,故,,因此,椭圆方程为.【小问2详解】解:设、,由题意可知且,椭圆的右顶点为,则,,因为以为直径的圆过椭圆的右顶点,所以有,则,即,联立,,即,①由韦达定理得,,所以,,化简得,即或,均满足①式.当时,直线,恒过定点,舍去;当时,直线,恒过定点.综上所述,直线过定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点,常利用直线的点斜式方程或截距式来证明.21、(1)答案见解析;(2).【解析】(1)对求导并求定义域,讨论、分别判断的符号,进而确定单调区间.(2)由题设,结合(1)所得的单调性,讨论、、分别确定在给定区间上的最小值,根据最小值小于零求参数a的范围.【小问1详解】由题设,且定义域为,当,即时,在上,即在上递增;当,即时,在上,在上,所以在上递减,在上递增;【小问2详解】由(1)知:若,即时,则在上递增,故,可得;若,即时,则在上递减,在上递增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论