安徽省淮北市同仁中学2026届高二数学第一学期期末综合测试模拟试题含解析_第1页
安徽省淮北市同仁中学2026届高二数学第一学期期末综合测试模拟试题含解析_第2页
安徽省淮北市同仁中学2026届高二数学第一学期期末综合测试模拟试题含解析_第3页
安徽省淮北市同仁中学2026届高二数学第一学期期末综合测试模拟试题含解析_第4页
安徽省淮北市同仁中学2026届高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮北市同仁中学2026届高二数学第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从直线上动点作圆的两条切线,切点分别为、,则最大时,四边形(为坐标原点)面积是()A. B.C. D.2.绕着它的一边旋转一周得到的几何体可能是()A.圆台 B.圆台或两个圆锥的组合体C.圆锥或两个圆锥的组合体 D.圆柱3.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-84.已知为虚数单位,复数满足为纯虚数,则的虚部为()A. B.C. D.5.下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题6.在直三棱柱中,底面是等腰直角三角形,,则与平面所成角的正弦值为()A. B.C. D.7.已知等比数列的前项和为,则关于的方程的解的个数为()A.0 B.1C.无数个 D.0或无数个8.过点且与直线垂直的直线方程是()A. B.C. D.9.平面的法向量,平面的法向量,已知,则等于()A B.C. D.10.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.14411.如图,一个圆锥形的空杯子上面放着一个半径为4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛满杯子,则杯子的高()A.9cm B.6cmC.3cm D.4.5cm12.若椭圆的一个焦点为,则的值为()A.5 B.3C.4 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线C:的焦点F到准线的距离为4,过点F和的直线l与抛物线C交于P,Q两点.若,则________.14.数学家华罗庚说:“数缺形时少直观,形少数时难入微”,事实上,很多代数问题可以转化为几何问题加以解决.例如:与相关的代数问题,可以转化为点与点之间的距离的几何问题.结合上述观点:对于函数,的最小值为______15.四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,侧面ABE⊥底面BCDE,BC=2,CD=4(I)证明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值16.将集合且中所有的元素从小到大排列得到的数列记为,则___________(填数值).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,O为底面正方形ABCD对角线的交点,E为PD的中点,且PA=AD.(1)求证:PB∥平面EAC;(2)求直线BD与平面EAC所成角的正弦值.18.(12分)已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点(1)求双曲线的方程;(2)若直线与双曲线恒有两个不同的交点和,且(其中为原点),求的取值范围19.(12分)已知点A(1,2)在抛物线C∶上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,kAE,若直线DE过点P(-1,-2)(1)求抛物线C的方程;(2)求直线AD,AE的斜率之积.20.(12分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值21.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)过点作圆C的切线,求切线的方程22.(10分)某初中学校响应“双减政策”,积极探索减负增质举措,优化作业布置,减少家庭作业时间.现为调查学生的家庭作业时间,随机抽取了名学生,记录他们每天完成家庭作业的时间(单位:分钟),将其分为,,,,,六组,其频率分布直方图如下图:(1)求的值,并估计这名学生完成家庭作业时间的中位数(中位数结果保留一位小数);(2)现用分层抽样的方法从第三组和第五组中随机抽取名学生进行“双减政策”情况访谈,再从访谈的学生中选取名学生进行成绩跟踪,求被选作成绩跟踪的名学生中,第三组和第五组各有名的概率

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析可知当时,最大,计算出、,进而可计算得出四边形(为坐标原点)面积.【详解】圆的圆心为坐标原点,连接、、,则,设,则,,则,当取最小值时,,此时,,,,故,此时,.故选:B.2、C【解析】讨论是按直角边旋转还是按斜边旋转【详解】按直角边选择可得下图圆锥:如果按直角边旋转可得下图的两个圆锥的组合体:故选:C3、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A4、D【解析】先设,代入化简,由纯虚数定义求出,即可求解.【详解】设,所以,因为为纯虚数,所以,解得,所以的虚部为:.故选:D.5、D【解析】根据命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识一一判断可得答案.【详解】解:A,由原命题与逆否命题的构成关系,可知A正确;B,当a=2>1时,函数在定义域内是单调递增函数,当函数定义域内是单调递增函数时,a>1.所以B正确;C,由于存在性命题的否定是全称命题,所以",使得"的否定是",均有,所以C正确;D,的根不一定是极值点,例如:函数,则=0,即x=0就不是极值点,所以“若为的极值点,则”的逆命题为假命题,故选D.【点睛】本题主要考查命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识,需牢记并灵活运用相关知识.6、C【解析】取的中点,连接,易证平面,进一步得到线面角,再解三角形即可.【详解】如图,取的中点,连接,三棱柱为直三棱柱,则平面,又平面,所以,又由题意可知为等腰直角三角形,且为斜边的中点,从而,而平面,平面,且,所以平面,则为与平面所成的角.在直角中,.故选:C7、D【解析】利用等比数列的求和公式讨论公比的取值即得.【详解】设等比数列的公比为,当时,,因为,所以无解,即方程的解的个数为0,当时,,所以时,方程有无数个偶数解,当时,方程无解,综上,关于的方程的解的个数为0或无数个.故选:D.8、C【解析】根据两直线垂直时斜率乘积为,可以直接求出所求直线的斜率,再根据点斜式求出直线方程,最后化成一般式方程即可.【详解】因为直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选:C9、A【解析】根据两个平面平行得出其法向量平行,根据向量共线定理进行计算即可.【详解】由题意得,因为,所以(),即,解得,所以.故选:A10、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.11、A【解析】根据圆锥和球的体积公式以及半球的体积等于圆锥的体积,即可列式解出【详解】由题意可得,,解得.故选:A12、B【解析】由题意判断椭圆焦点在轴上,则,解方程即可确定的值.【详解】有题意知:焦点在轴上,则,从而,解得:.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】根据抛物线C:的焦点F到准线的距离为4,求得抛物线方程.再由和,得到点P的坐标,进而得到直线l的方程,与抛物线方程联立求得的坐标,再由两点间距离公式求解.【详解】由抛物线C:的焦点F到准线的距离为4,所以,所以抛物线方程为.因为,,所以点P的纵坐标为1,代入抛物线方程,可得点P的横坐标为,不妨设,则,故直线l的方程为,将其代入得.可得,故.故答案为:9【点睛】本题主要考查抛物线的方程与性质,还考查了运算求解的能力,属于中档题.14、【解析】根据题意得,表示点与点与距离之和的最小值,再找对称点求解即可.【详解】函数,表示点与点与距离之和的最小值,则点在轴上,点关于轴的对称点,所以,所以的最小值为:.故答案为:.15、(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)推导出BE⊥BC,从而BE⊥平面ABC,进而BE⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能证明AB⊥面BCDE(Ⅱ)以B为原点,所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣AD﹣E的正弦值【详解】由侧面底面,且交线为,底面为矩形所以平面,又平面,所以由面面,同理可证,又面在底面中,,由面,故,以为原点,所在直线分别为轴建立空间直角坐标系,则,设平面的法向量,则,取所以平面的法向量,同理可求得平面的法向量.设二面角的平面角为,则故所求二面角的正弦值为.【点睛】本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题16、992【解析】列举数列的前几项,观察特征,可得出.详解】由题意得观察规律可得中,以为被减数的项共有个,因为,所以是中的第5项,所以.故答案为:992.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用线面平行的判断定理,证明线线平行,即可证明;(2)建立空间直角坐标系,求平面的法向量,利用公式,即可求解.【小问1详解】连结EO,由题意可得O为BD的中点,又E是PD的中点,∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小问2详解】如图,以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,设AD=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=(0,1,1),=(2,2,0),设平面EAC的法向量为=(x,y,z),则,即,即,令y=1得x=-1,z=-1,∴平面EAC的一个法向量为=(-1,1,-1),∴设直线BD与平面EAC所成的角为θ,则sinθ=∴直线BD与平面EAC所成的角的正弦值.18、(1);(2)【解析】(1)求出椭圆的焦点和顶点,即得双曲线的顶点和焦点,从而易求得标准方程;(2)将代入,得由直线与双曲线交于不同的两点,得的取值范围,设,由韦达定理得则代入可求得的范围【详解】(1)设双曲线的方程为,则,再由,得故的方程为(2)将代入,得由直线与双曲线交于不同的两点,得①设则又,得,,即,解得②由①②得<k2<1,故的取值范围【点睛】本题考查双曲线的标准方程,考查直线与双曲线相交中的范围问题.应注意:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围(4)利用已知的不等关系构造不等式,从而求出参数的取值范围(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围19、(1)(2)【解析】(1)代入点即可求得抛物线方程;(2)联立方程后利用韦达定理求出,,,,然后代入即可求得斜率的积.【小问1详解】解:点A(1,2)在抛物线C∶上故【小问2详解】设直线方程为:联立方程,整理得:由题意及韦达定理可得:,20、(1)(2)【解析】【小问1详解】由,得.两边同乘,即.由,得曲线的直角坐标方程为【小问2详解】将代入,得,设A,B对应的参数分别为则所以.由参数的几何意义得21、(1)(2)或【解析】(1)由圆心在直线上,设,由点在圆上,列方程求,由此求出圆心坐标及半径,确定圆的方程;(2)当切线的斜率存在时,设其方程为,由切线的性质列方程求,再检验直线是否为切线,由此确定答案.小问1详解】因为圆C的圆心在直线上,设圆心的坐标为,圆C过点,,所以,即,解得,则圆心,半径,所以圆的方程为;【小问2详解】当切线的斜率存在时,设直线的方程为,即,因为直线和圆相切,得,解得,所以直线方程为,当切线的斜率不存在时,易知直线也是圆的切线,综上,所求的切线方程为或22、(1);这名学生完成家庭作业时间的中位数约为分钟(2)【解析】(1)由频率分布直方图频率之和为,建立方程求解即可;设中位数为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论