2026届福建华安一中、长泰一中等四校高一上数学期末教学质量检测试题含解析_第1页
2026届福建华安一中、长泰一中等四校高一上数学期末教学质量检测试题含解析_第2页
2026届福建华安一中、长泰一中等四校高一上数学期末教学质量检测试题含解析_第3页
2026届福建华安一中、长泰一中等四校高一上数学期末教学质量检测试题含解析_第4页
2026届福建华安一中、长泰一中等四校高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届福建华安一中、长泰一中等四校高一上数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于函数,若存在,使,则称点是曲线“优美点”.已知,则曲线的“优美点”个数为A.1 B.2C.4 D.62.全集U={1,2,3,4,5,6},M={x|x≤4},则M等于()A.{1,3} B.{5,6}C.{1,5} D.{4,5}3.若函数的定义域是,则函数值域为()A. B.C. D.4.如图所示,在中,.若,,则()A. B.C. D.5.已知函数,则()A. B.C. D.16.已知两直线,.若,则的值为A.0 B.0或4C.-1或 D.7.下列四个集合中,是空集的是()A. B.C. D.8.是上的奇函数,满足,当时,,则()A. B.C. D.9.幂函数在上是减函数.则实数的值为A.2或 B.C.2 D.或110.下列各式中,正确是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的解集为_____________________________________12.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______13.已知集合,,则__________14.函数的单调减区间是__________15.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.16.已知函数若互不相等,且,则的取值范围是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)18.已知圆的圆心坐标为,直线被圆截得的弦长为.(1)求圆的方程;(2)求经过点且与圆C相切的直线方程.19.一次函数是上的增函数,,已知.(1)求;(2)当时,有最大值13,求实数的值.20.已知圆,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求线段PM长度.(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段长度的最小值21.已知函数的图象关于直线对称,且图象相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】曲线的“优美点”个数,就是的函数关于原点对称的函数图象,与的图象的交点个数,求出的函数关于原点对称的函数解析式,与联立,解方程可得交点个数【详解】曲线的“优美点”个数,就是的函数关于原点对称的函数图象,与的图象的交点个数,由可得,关于原点对称的函数,,联立和,解得或,则存在点和为“优美点”,曲线的“优美点”个数为4,故选C【点睛】本题考查新定义的理解和运用,考查转化思想和方程思想,属于难题.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.2、B【解析】M即集合U中满足大于4的元素组成的集合.【详解】由全集U={1,2,3,4,5,6},M={x|x≤4}则M={5,6}.故选:B【点睛】本题考查求集合的补集,属于基础题.3、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A4、C【解析】根据.且,,利用平面向量的加法,减法和数乘运算求解.【详解】因为.且,,所以,,,.故选:C5、D【解析】由分段函数定义计算【详解】,所以故选:D6、B【解析】分两种情况:一、斜率不存在,即此时满足题意;二、斜率存在即,此时两斜率分别为,,因为两直线平行,所以,解得或(舍),故选B考点:由两直线斜率判断两直线平行7、D【解析】对每个集合进行逐一检验,研究集合内的元素是否存在即可选出.【详解】选项A,;选项B,;选项C,;选项D,,方程无解,.选:D.8、D【解析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【点睛】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.9、B【解析】由题意利用幂函数的定义和性质可得,由此解得的值【详解】解:由于幂函数在时是减函数,故有,解得,故选:【点睛】本题主要考查幂函数的定义和性质应用,属于基础题10、C【解析】利用指数函数的单调性可判断AB选项的正误,利用对数函数的单调性可判断CD选项的正误.【详解】对于A选项,因为函数在上为增函数,则,A错;对于B选项,因为函数在上为减函数,则,B错;对于C选项,因为函数为上的增函数,则,C对;对于D选项,因为函数为上的减函数,则,D错.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.12、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:13、【解析】因为集合,,所以,故答案为.14、【解析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.15、【解析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【点睛】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角16、(10,12)【解析】不妨设a<b<c,作出f(x)的图象,如图所示:由图象可知0<a<1<b<10<c<12,由f(a)=f(b)得|lga|=|lgb|,即−lga=lgb,∴lgab=0,则ab=1,∴abc=c,∴abc的取值范围是(10,12),三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、.【解析】设送报人到达的时间为X,小王离家去工作的时间为Y,(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,求出其面积,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}

求出其面积,根据几何概型的概率公式解之即可;试题解析:如图,设送报人到达的时间为,小王离家去工作的时间为.(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,面积为,事件表示小王离家前不能看到报纸,所构成的区域为即图中的阴影部分,面积为.这是一个几何概型,所以.答:小王离家前不能看到报纸的概率是0.125.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率18、(1);(2)和.【解析】(1)根据圆心坐标设圆的标准方程,结合点到直线的距离公式求出圆的半径即可.(2)当切线斜率不存在时满足题意;当切线斜率存在时,设切线方程,结合点到直线的距离公式和圆心到直线的距离为半径,计算求出直线斜率即可.【详解】(1)设圆的标准方程为:圆心到直线的距离:,则圆的标准方程:(2)①当切线斜率不存在时,设切线:,此时满足直线与圆相切.②当切线斜率存在时,设切线:,即则圆心到直线的距离:.解得:,即则切线方程为:综上,切线方程为:和19、(1)(2)或.【解析】(1)根据题意设,利用求出值即可;(2)根据为二次函数,讨论对称轴与的关系,可得函数最大值,即可求出m.【详解】(1)∵一次函数是上的增函数,∴设,,∴,解得或(不合题意舍去),∴.(2)由(1)得,①当,即时,,解得,符合题意;②当,即时,,解得,符合题意.由①②可得或.【点睛】本题主要考查了函数解析式的应用以及二次函数的图象与性质的应用问题,属于中档题.20、(1)8(2)(3)【解析】(1)根据圆中切线长的性质得到;(2)设,经过A,P,M三点的圆N以MP为直径,圆N的方程为化简求值即可;(3)(Ⅲ)求出点M到直线AB的距离,利用勾股定理,即可求线段AB长度的最小值.解析:(1)由题意知,圆M的半径r=4,圆心M(0,6),设PA是圆的一条切线,(2)设,经过A,P,M三点的圆N以MP为直径,圆心,半径为得圆N的方程为即,有由,解得或圆过定点(3)圆N的方程,即①圆即②②-①得:圆M与圆N相交弦AB所在直线方程为:圆心M(0,6)到直线AB的距离弦长当时,线段AB长度有最小值.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;圆的问题经常应用的性质有垂径定理的应用,切线长定理的应用.21、(1),;(2)【解析】(1)根据对称轴和周期可求和的值(2)由题设可得,利用同角的三角函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论