山东省烟台市2026届高二上数学期末统考试题含解析_第1页
山东省烟台市2026届高二上数学期末统考试题含解析_第2页
山东省烟台市2026届高二上数学期末统考试题含解析_第3页
山东省烟台市2026届高二上数学期末统考试题含解析_第4页
山东省烟台市2026届高二上数学期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省烟台市2026届高二上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-22.如图是抛物线拱形桥,当水面在时,拱顶离水面,水面宽,若水面上升,则水面宽是()(结果精确到)(参考数值:)A B.C. D.3.已知函数的图象如图所示,则其导函数的图象可能是()A. B.C. D.4.已知函数.设命题的定义域为,命题的值域为.若为真,为假,则实数的取值范围是()A. B.C. D.5.已知集合,,则()A. B.C. D.6.若动圆的圆心在抛物线上,且恒过定点,则此动圆与直线()A.相交 B.相切C.相离 D.不确定7.设α,β是两个不同的平面,m,n是两条不重合的直线,下列命题中为真命题的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么8.已知是双曲线的左焦点,,是双曲线右支上的动点,则的最小值为()A.9 B.8C.7 D.69.已知p:,那么p的一个充分不必要条件是()A. B.C. D.10.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°11.圆与圆的位置关系是()A.相交 B.相离C.内切 D.外切12.在直三棱柱中,底面是等腰直角三角形,,则与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知在时有极值0,则的值为____14.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为____________________.15.已知等差数列满足,,,则公差______16.命题,恒成立是假命题,则实数a取值范围是________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知.(1)求直线的方程;(2)平面内的动点满足,到点与点距离的平方和为24,求动点的轨迹方程.18.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的存在,求实数的取值范围;若问题中的不存在,请说明理由设等差数列的前n项和为,数列的前n项和为,___________,,,是否存在实数,对任意都有?19.(12分)已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.(1)m∈R时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短?求此弦长20.(12分)已知数列的前n项和为,且(1)求数列的通项公式;(2)若,数列的前n项和为,求的值21.(12分)已知三点共线,其中是数列中的第n项.(1)求数列的通项;(2)设,求数列的前n项和.22.(10分)2017年国家提出乡村振兴战略目标:2020年取得重要进展,制度框架和政策体系基本形成;2035年取得决定性进展,农业农村现代化基本实现;2050年乡村全面振兴,农业强、农村美、农民富全面实现.某地为实现乡村振兴,对某农产品加工企业调研得到该企业2012年到2020年盈利情况:年份201220132014201520162017201820192020年份代码x123456789盈利y(百万)6.06.16.26.06.46.96.87.17.0(1)根据表中数据判断年盈利y与年份代码x是否具有线性相关性;(2)若年盈利y与年份代码x具有线性相关性,求出线性回归方程并根据所求方程预测该企业2021年年盈利(结果保留两位小数)参考数据及公式:,,,,,统计中用相关系数r来衡量变量y,x之间的线性关系的强弱,当时,变量y,x线性相关

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D2、C【解析】先建立直角坐标系,设抛物线方程为x2=my,将点坐标代入抛物线方程求出m,从而可得抛物线方程,再令y=代入抛物线方程求出x,即可得到答案【详解】解:如图建立直角坐标系,设抛物线方程为x2=my,由题意,将代入x2=my,得m=,所以抛物线的方程为x2=,令y=,解得,所以水面宽度为2.24×817.9m故选:C3、A【解析】根据原函数图象判断出函数单调性,由此判断导函数的图象.【详解】原函数在上从左向右有增、减、增,个单调区间;在上递减.所以导函数在上从左向右应为:正、负、正;在上应为负.所以A选项符合.故选:A4、C【解析】根据一元二次不等式恒成立和二次函数值域可求得为真命题时的取值范围,根据和的真假性可知一真一假,分类讨论可得结果.【详解】若命题为真,则在上恒成立,,;若命题为真,则的值域包含,则或,;为真,为假,一真一假,若真假,则;若假真,则;综上所述:实数的取值范围为.故选:C.5、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B6、B【解析】根据题意得定点为抛物线的焦点,为准线,进而根据抛物线的定义判断即可.【详解】解:由题知,定点为抛物线的焦点,为准线,因为动圆的圆心在抛物线上,且恒过定点,所以根据抛物线的定义得动圆的圆心到直线的距离等于圆心到定点,即圆心到直线的距离等于动圆的半径,所以动圆与直线相切.故选:B7、C【解析】AB.利用两平面的位置关系判断;CD.利用面面平行的判定定理判断;【详解】A.如果,,n∥β,那么α,β相交或平行;故错误;B.如果,,,那么α,β垂直,故错误;C.如果m∥n,,则,又,那么α∥β,故C正确;D错误,故选:C8、A【解析】由双曲线方程求出,再根据点在双曲线的两支之间,结合可求得答案【详解】由,得,则,所以左焦点为,右焦点,则由双曲线的定义得,因为点在双曲线的两支之间,所以,所以,当且仅当三点共线时取等号,所以的最小值为9,故选:A9、C【解析】按照充分不必要条件依次判断4个选项即可.【详解】A选项:,错误;B选项:,错误;C选项:,,正确;D选项:,错误.故选:C.10、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.11、A【解析】求出两圆的圆心及半径,求出圆心距,从而可得出结论.【详解】解:圆的圆心为,半径为,圆圆心为,半径为,则两圆圆心距,因为,所以两圆相交.故选:A.12、C【解析】取的中点,连接,易证平面,进一步得到线面角,再解三角形即可.【详解】如图,取的中点,连接,三棱柱为直三棱柱,则平面,又平面,所以,又由题意可知为等腰直角三角形,且为斜边的中点,从而,而平面,平面,且,所以平面,则为与平面所成的角.在直角中,.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】由题知,且,所以,得或,①当时,,此时,,所以函数单调递增无极值,舍去②当时,,此时,是函数的极值点,符合题意,∴14、【解析】依题意,设所求的双曲线的方程为.点为该双曲线上的点,.该双曲线的方程为:,即.故本题正确答案是.15、2【解析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:216、【解析】由命题为假命题可得命题为真命题,由此可求a范围.【详解】∵命题,恒成立是假命题,∴,,∴,,又函数在为减函数,∴,∴,∴实数a的取值范围是,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)结合点斜式求得直线的方程.(2)设,根据已知条件列方程,化简求得的轨迹方程.【小问1详解】,于是直线的方程为,即【小问2详解】设动点,于是,代入坐标得,化简得,于是动点的轨迹方程为18、答案见解析【解析】由已知条件可得,假设时,取最小值,则,若补充条件是①,则可求得,代入化简可求出的取值范围,从而可求得答案,若补充条件是②,则可得,该数列是递减数列,所以不存在k,使得取最小值,若补充条件是③,则可得,代入化简可求出的取值范围,从而可求得答案,【详解】解:等差数列的公差为d,当时,,得,从而,当时,得,所以数列是首项为,公比为的等比数列,所以,由对任意,都有,当等差数列的前n项和存在最小值时,假设时,取最小值,所以;若补充条件是①,因为,,从而,由得,所以,由等差数列的前n项和存在最小值,则,得,又,所以.所以,故实数的取值范围为若补充条件是②,由,即,又,所以.所以,由于该数列是递减数列,所以不存在k,使得取最小值,故实数不存在以下为严格的证明:由等差数列的前n项和存在最小值,则,得,所以,所以不存在k,使得取最小值,故实数不存在若补充条件是③,由,得,又,所以,所以由等差数列的前n项和存在最小值,则,得,又,所以.所以存在,使得取最小值,所以,故实数的取值范围为19、(1)证明见解析;(2)当时,l被C截得的弦长最短,最短弦长为.【解析】(1)求出直线l的定点,进而判断定点和圆C的位置关系,最后得到答案;(2)当圆心C到直线l的距离最大时,弦长最短,进而求出m,然后根据勾股定理求出弦长.【详解】(1)直线l的方程可化为y+3=2m(x-4),则l过定点P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P在圆内,故直线l与圆C总相交(2)圆的C方程可化为:(x-3)2+(y+6)2=25,如图所示,当圆心C(3,-6)到直线l的距离最大时,弦AB的长度最短,此时PC⊥l,又,所以直线l的斜率为,则,在直角中,|PC|=,|AC|=5,所以|AB|=.故当时,l被C截得的弦长最短,最短弦长为.20、(1);(2).【解析】(1)根据给定的递推公式结合“当时,”探求相邻两项的关系计算作答.(2)由(1)的结论求出,再利用裂项相消法求出,即可作答.【小问1详解】依题意,,,则当时,,于是得:,即,而当时,,即有,因此,,,所以数列是以2为首项,2为公比的等比数列,,所以数列的通项公式是.【小问2详解】由(1)知,,从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论