版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省“五个一”名校联盟数学高二上期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.2.已知命题p:,,则()A., B.,C., D.,3.过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条 B.2条C.3条 D.4条4.已知直线与直线垂直,则a=()A.3 B.1或﹣3C.﹣1 D.3或﹣15.用斜二测画法画出边长为2的正方形的直观图,则直观图的面积为()A. B.C.4 D.6.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. B.C. D.7.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.8.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.9.在正方体中中,,若点P在侧面(不含边界)内运动,,且点P到底面的距离为3,则异面直线与所成角的余弦值是()A. B.C. D.10.已知函数,若,,则实数的取值范围是A. B.C. D.11.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.12.抛物线上有两个点,焦点,已知,则线段的中点到轴的距离是()A.1 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则__________.14.若直线与曲线没有公共点,则实数的取值范围是____________15.若正实数满足,则的最大值是________16.已知曲线的焦距是10,曲线上的点到一个焦点的距离是2,则点到另一个焦点的距离为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,矩形的两个顶点位于x轴上,另两个顶点位于抛物线在x轴上方的曲线上,求矩形面积最大时的边长.18.(12分)某校从高三年级学生中随机抽取名学生的某次数学考试成绩,将其成绩分成,,,,的组,制成如图所示的频率分布直方图.(1)求图中的值;(2)估计这组数据的平均数;(3)若成绩在内的学生中男生占.现从成绩在内的学生中随机抽取人进行分析,求人中恰有名女生的概率.19.(12分)在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.20.(12分)在平面直角坐标系中,点在抛物线上(1)求的值;(2)若直线l与抛物线C交于,两点,,且,求的最小值21.(12分)中,三内角A,B,C所对的边分别为a,b,c,已知(1)求角A;(2)若,角A的角平分线交于D,,求a22.(10分)已知椭圆的焦距为,离心率为.(1)求椭圆的方程;(2)若斜率为1的直线与椭圆交于不同的两点,,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B2、C【解析】由全称命题的否定:将任意改存在并否定结论,即可写出原命题p的否定.【详解】由全称命题的否定为特称命题,∴是“,”.故选:C.3、B【解析】利用几何法,结合双曲线的几何性质,得出符合条件的结论.【详解】由双曲线的方程可知其渐近线方程为y=±x,则点P(2,1)在渐近线y=x上,又双曲线的右顶点为A(2,0),如图所示.满足条件的直线l有两条:x=2,y-1=-(x-2)【点睛】该题考查的是有关直线与双曲线的公共点有一个的条件,结合双曲线的性质,结合图形,得出结果,属于中档题目.4、D【解析】根据,得出关于的方程,即可求解实数的值.【详解】直线与直线垂直,所以,解得或.故选:D.5、A【解析】画出直观图,求出底和高,进而求出面积.【详解】如图,,,,过点C作CD⊥x轴于点D,则,所以直观图是底为2、高为的平行四边形,所以面积为.故选:A.6、A【解析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从5个点中任取3个有共种不同取法,3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.7、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.8、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A9、A【解析】如图建立空间直角坐标系,先由,且点P到底面的距离为3,确定点P的位置,然后利用空间向量求解即可【详解】如图,以为坐标原点,以所在的直线分别为轴,建立空间直角坐标系,则,所以,所以,所以,因为,所以平面,因为平面平面,点P在侧面(不含边界)内运动,,所以,因为点P到底面的距离为3,所以,所以,因为,所以异面直线与所成角的余弦值为,故选:A10、A【解析】函数,若,,可得,解得或,则实数的取值范围是,故选A.11、C【解析】运用点差法即可求解【详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C12、B【解析】利用抛物线的定义,将抛物线上的点到焦点的距离转化为点到准线的距离,即可求出线段中点的横坐标,即得到答案.【详解】由已知可得抛物线的准线方程为,设点的坐标分别为和,由抛物线的定义得,即,线段中点的横坐标为,故线段的中点到轴的距离是.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对递推关系多递推一次,再相减,可得,再验证是否满足;【详解】∵①时,②①-②得,时,满足上式,.故答案为:.【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14、;【解析】可化简曲线的方程为,作出其图形,数形结合求临界值即可求解.【详解】由可得,所以曲线为以为圆心,的下半圆,作出图形如图:当直线过点时,,可得,当直线与半圆相切时,则圆心到直线的距离,可得:或(舍),若直线与曲线没有公共点,由图知:或,所以实数的取值范围是:,故答案为:15、4【解析】由基本不等式及正实数、满足,可得的最大值.【详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.16、或10.【解析】对参数a进行讨论,考虑曲线是椭圆和双曲线的情况,进而结合椭圆与双曲线的定义和性质求得答案.【详解】由题意,曲线的半焦距为5,若曲线是焦点在x轴上的椭圆,则a>16,所以,而椭圆上的点到一个焦点距离是2,则点到另一个焦点的距离为;若曲线是焦点在y轴上的椭圆,则0<a<16,所以,舍去;若曲线是双曲线,则a<0,容易判断双曲线的焦点在y轴,所以,不妨设点P在双曲线的上半支,上下焦点分别为,因为实半轴长为4,容易判断点P到下焦点的距离的最小值为4+5=9>2,不合题意,所以点P到上焦点的距离为2,则它到下焦点的距离.故答案为:或10.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、当矩形面积最大时,矩形边AB长,BC长【解析】先设出点坐标,进而表示出矩形的面积,通过求导可求出其最大面积.【详解】设点,那么矩形面积,.令解得(负舍).所以S在(0,)上单调递增,在(,2)上单调递;..所以当时,S有最大值.此时答:当矩形面积最大时,矩形边AB长,BC长.18、(1)(2)77(3)【解析】(1)根据给定条件结合频率分布直方图中各小矩形面积和为1的特点列式计算即得.(2)利用频率分布直方图求平均数的方法直接列式计算即得.(3)求出成绩在内的学生及男女生人数,再用列举法即可求出概率.【小问1详解】由频率分布直方图得,解得,所以图中值是0.020.【小问2详解】由频率分布直方图得这组数据的平均数:,所以这组数据的平均数为77.【小问3详解】数学成绩在内的人数为(人),其中男生人数为(人),则女生人数为人,记名男生分别为,,名女生分别为,,,从数学成绩在内的人中随机抽取人进行分析的基本事件为:,共个不同结果,它们等可能,其中人中恰有名女生的基本事件为,共种结果,所以人中恰有名女生的概率为为.19、(1)(2)或.【解析】(1)设标准方程代入点的坐标,解方程组得解.(2)设直线方程代入椭圆方程消元,韦达定理整体思想,可得直线斜率得解.【小问1详解】因为椭圆C的焦点为,可设椭圆C的方程为,又点在椭圆C上,所以,解得,因此,椭圆C的方程为;【小问2详解】当直线的斜率不存在时,显然不满足题意;当直线的斜率存在时,设直线的方程为,设,,因为,所以,因为,,所以,所以,①联立方程,消去得,则,代入①,得,解得,经检验,此时直线与椭圆相交,所以直线l的方程是或.20、(1)1(2)【解析】(1)将点代入即可求解;(2)利用向量数量积为3求出,再对式子变形后使用基本不等式进行求解最小值.【小问1详解】将代入抛物线,解得:.【小问2详解】,在抛物线C上,故,,解得:或2,因为,所以,即,故,当且仅当,即时等号成立,故的最小值为.21、(1)(2)【解析】(1)根据正弦定理统一三角函数化简即可求解;(2)根据角平分线建立三角形面积方程求出b,再由余弦定理求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南省公安机关考试录用特殊职位公务员(人民警察)13人备考题库附答案详解
- 2026上半年云南事业单位联考省科学技术厅直属事业单位招聘8人备考题库及一套答案详解
- 2026年上半年中共云南省委办公厅所属事业单位招聘人员备考题库(4人)及答案详解(易错题)
- 2026中国科学院遗传与发育生物学研究所李家洋研究组人员招聘1人备考题库及一套参考答案详解
- 2026广东广州市越秀区登峰街招聘综合行政执法协管员2人备考题库及完整答案详解1套
- 2026年上半年云南省科学技术厅直属事业单位公开招聘人员备考题库(8人)参考答案详解
- 信息技术教师招聘考试试题简答题论述题及答案
- 2026年商场食品安全事故应急演练实施方案
- 2025年医疗废弃物无害化处理中心建设与可持续发展分析报告
- 2026年汽车维修技师笔试与实操预测模拟题
- 云南省玉溪市2025-2026学年八年级上学期1月期末物理试题(原卷版+解析版)
- DL-T976-2017带电作业工具、装置和设备预防性试验规程
- 企业标准-格式模板
- 软件售后服务人员提成方案附表
- 五年级上册道德与法治期末测试卷新版
- 友达光电(昆山)有限公司第一阶段建设项目环保“三同时”执行情况报告
- 建筑材料进场报告
- YY/T 1543-2017鼻氧管
- YS/T 903.1-2013铟废料化学分析方法第1部分:铟量的测定EDTA滴定法
- GB/T 9414.9-2017维修性第9部分:维修和维修保障
- GB/T 21781-2008化学品的熔点及熔融范围试验方法毛细管法
评论
0/150
提交评论