版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市河西区实验中学2026届高二数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设P为椭圆C:上一点,,分别为左、右焦点,且,则()A. B.C. D.2.函数的最小值为()A. B.1C.2 D.e3.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A B.C. D.4.已知双曲线的左焦点为,,为双曲线的左、右顶点,渐近线上的一点满足,且,则双曲线的离心率为()A. B.C. D.5.函数在上是单调递增函数,则的最大值等于()A.2 B.3C.5 D.66.已知、为非零实数,若且,则下列不等式成立的是()A. B.C. D.7.已知函数,那么“”是“在上为增函数”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.49.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.310.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.4811.双曲线的左、右焦点分别为F1,F2,点P在双曲线上,下列结论不正确的是()A.该双曲线的离心率为B.该双曲线的渐近线方程为C.点P到两渐近线的距离的乘积为D.若PF1⊥PF2,则△PF1F2的面积为3212.已知方程表示双曲线,则实数的取值范围是()A.或 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线上一点到其焦点的距离为,则的值为______14.已知圆和直线.(1)求直线l所经过的定点的坐标,并判断直线与圆的位置关系;(2)求当k取什么值,直线被圆截得的弦最短,并求这条最短弦的长.15.椭圆的离心率是______16.已知直线与直线垂直,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点在抛物线上,且点的纵坐标为4,(1)求抛物线的方程;(2)过点作直线交抛物线于两点,试问抛物线上是否存在定点使得直线与的斜率互为倒数?若存在求出点的坐标,若不存在说明理由18.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数取值范围19.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程20.(12分)已知正项数列的首项为,且满足,(1)求证:数列为等比数列;(2)记,求数列的前n项和21.(12分)写出下列命题的否定,并判断它们的真假:(1):任意两个等边三角形都是相似的;(2):,.22.(10分)在等比数列中,是与的等比中项,与的等差中项为6(1)求的通项公式;(2)设,求数列前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据椭圆的定义写出,再根据条件即可解得答案.【详解】根据P为椭圆C:上一点,则有,又,所以,故选:B.2、B【解析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B3、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得4、C【解析】由双曲线的渐近线方程和两点的距离公式,求得点的坐标和,在中,利用余弦定理,求得的关系式,再由离心率公式,计算即可求解.【详解】由题意,双曲线,可得,设在渐近线上,且点在第一象限内,由,解得,即点,所以,在中,由余弦定理可得,可得,即,所以双曲线离心率为.故选:C.【点睛】求解椭圆或双曲线的离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.5、B【解析】由f(x)=x3﹣ax在[1,+∞)上是单调增函数,得到在[1,+∞)上,恒成立,从而解得a≤3,故a的最大值为3【详解】解:∵f(x)=x3﹣ax在[1,+∞)上是单调增函数∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)时,3x2≥3恒成立,∴a≤3,∴a的最大值是3故选:B6、D【解析】作差法即可逐项判断.【详解】或,对于A:,∵,无法判断正负,故A错误;对于B:,∵无法判断正负,故B错误;对于C:,∵,,∴,,故C错误;对于D:,∴,故D正确.故选:D.7、A【解析】对函数进行求导得,进而得时,,在上为增函数,然后判断充分性和必要性即可.【详解】解:因为的定义域是,所以,当时,,在上为增函数.所以在上为增函数,是充分条件;反之,在上为增函数或,不是必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,属于中档题.8、A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A9、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.10、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.11、D【解析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a=3,b=4,c=5,,故离心率e,故A正确;由双曲线的性质可知,双曲线线的渐近线方程为y=±x,故B正确;设P(x,y),则P到两渐近线的距离之积为,故C正确;若PF1⊥PF2,则△PF1F2是直角三角形,由勾股定理得,由双曲线的定义可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D错误.故选:D12、A【解析】根据双曲线标准方程的性质,列出关于不等式,求解即可得到答案【详解】由双曲线的性质:,解的或,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将抛物线方程化为标准方程,利用抛物线的定义将抛物线上的点到焦点的距离转化为到准线的距离,再利用点到直线的距离公式进行求解.【详解】将抛物线化为,由抛物线定义得点到准线的距离为,即,解得故答案为:.14、(1)直线过定点P(4,3),直线和圆总有两个不同交点(2)k=1,【解析】(1)把直线方程化为点斜式方程即可;(2)由圆的性质知,当直线与PC垂直时,弦长最短.【小问1详解】直线方程可化为,则直线过定点P(4,3),又圆C标准方程为,圆心为,半径为,而,所以点P在圆内,所以不论k取何值,直线和圆总有两个不同交点.【小问2详解】由圆的性质知,当直线与PC垂直时,弦长最短.,所以k=1时弦长最短.弦长为.15、【解析】求出、、的值,即可得出椭圆的离心率.【详解】在椭圆中,,,,因此,椭圆的离心率是.故答案为:.16、-3【解析】因为直线与直线垂直,所以考点:本题考查两直线垂直的充要条件点评:若两直线方程分别为,则他们垂直的充要条件是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解析】(1)利用抛物线的焦半径公式求得点的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线与的斜率互为倒数列出等式,化简可得结论.【小问1详解】(1)则,,,,故C的方程为:;【小问2详解】假设存在定点,使得直线与的斜率互为倒数,由题意可知,直线AB的斜率存在,且不为零,,,,,所以Δ>0y1+即或,,,则,,使得直线与的斜率互为倒数.18、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,因此有,解得,所以实数的取值范围是.19、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.20、(1)证明见解析(2)【解析】(1)由递推关系式化简及等比数列的的定义证明即可;(2)根据裂项相消法求解即可得解.【小问1详解】证明:由得,而且,则,即数列为首项,公比为的等比数列【小问2详解】由上可知,所以,21、(1)存在两个等边三角形不是相似的,假命题(2),真命题【解析】根据全称命题与存在性命题的关系,准确改写,即可求解.【小问1详解】解:命题“任意两个等边三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年领导干部任前廉政法规知识竞赛试题库及答案
- 育儿中级考试题库及答案
- 医药道德考试题及答案
- 2026字节跳动招聘题库及答案
- 2026黄河实验室(河南)招聘5人参考题库必考题
- 中共凉山州委办公室2025年面向全州公开考调公务员的(3人)备考题库附答案
- 中国火箭公司2026校园招聘参考题库必考题
- 云南省2026年面向华中农业大学定向选调生招录考试备考题库附答案
- 学习机产品功能展示考试备考题库必考题
- 川北医学院2025年公开选调工作人员考试备考题库附答案
- 法学概论(第七版) 课件全套 谷春德 第1-7章 我国社会主义法的基本理论 - 国际法
- JJG 291-2018溶解氧测定仪
- 《抗体偶联药物》课件
- 《肺癌的诊断与治疗》课件
- 音响质量保证措施
- 循环水冷却系统安全操作及保养规程
- 神经病学教学课件:脑梗死
- HY/T 055-2001折叠筒式微孔膜过滤芯
- GB/T 21393-2008公路运输能源消耗统计及分析方法
- GB/T 20946-2007起重用短环链验收总则
- GB/T 13803.2-1999木质净水用活性炭
评论
0/150
提交评论