版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市扶沟高中2026届高二数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,记M到x轴的距离为a,到y轴的距离为b,到z轴的距离为c,则()A. B.C. D.2.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B.C. D.3.在三棱锥中,,,则异面直线PC与AB所成角的余弦值是()A. B.C. D.4.若双曲线的一个焦点为,则的值为()A. B.C.1 D.5.定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫作等方差数列,这个常数叫作该数列的方公差.设是由正数组成的等方差数列,且方公差为4,,则数列的前24项和为()A. B.3C. D.66.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=07.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.8.已知等比数列中,,前三项之和,则公比的值为()A1 B.C.1或 D.或9.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.10.在等比数列中,,,则等于()A. B.5C. D.911.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值12.若数列为等比数列,且,,则()A.8 B.16C.32 D.64二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行六面体中,设,N是的中点,则向量_________.(用表示)14.无穷数列满足:只要必有,则称为“和谐递进数列”,已知为“和谐递进数列”,且前四项成等比数列,,,则__________,若数列前项和为,则__________.15.已知、是椭圆()长轴的两个端点,、是椭圆上关于轴对称的两点,直线,的斜率分别为,().若椭圆的离心率为,则的最小值为______16.函数满足,且,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆心在直线上,且过点、(1)求的标准方程;(2)已知过点的直线被所截得的弦长为4,求直线的方程18.(12分)如图,分别是椭圆C:的左,右焦点,点P在椭圆C上,轴,点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(1)求椭圆C的方程;(2)已知M,N是椭圆C上的两点,若点,,试探究点M,,N是否一定共线?说明理由.19.(12分)数列{}的首项为,且(1)证明数列为等比数列,并求数列{}的通项公式;(2)若,求数列{}的前n项和20.(12分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.21.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值22.(10分)如图,在三棱锥中,已知△ABC和△PBC均为正三角形,D为BC的中点(1)求证:平面;(2)若,,求三棱锥的体积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别求出点M在x轴,y轴,z轴上的投影点的坐标,再借助空间两点间距离公式计算作答.【详解】设点M在x轴上的投影点,则,而x轴的方向向量,由得:,解得,则,设点M在y轴上的投影点,则,而y轴的方向向量,由得:,解得,则,设点M在z轴上的投影点,则,而z轴的方向向量,由得:,解得,则,所以.故选:C2、D【解析】根据长方体中,异面直线和所成角即为直线和所成角,再结合余弦定理即可求解.【详解】解:连接、,如下图所示由图可知,在长方体中,且,所以,所以异面直线和所成角即为,又,,由余弦定理可得∶故选:D.3、A【解析】分别取、、的中点、、,连接、、、、,由题意结合平面几何的知识可得、、或其补角即为异面直线PC与AB所成角,再由余弦定理即可得解.【详解】分别取、、的中点、、,连接、、、、,如图:由可得,所以,在,,可得由中位线的性质可得且,且,所以或其补角即为异面直线PC与AB所成角,在中,,所以异面直线AB与PC所成角的余弦值为.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角4、B【解析】由题意可知双曲线的焦点在轴,从而可得,再列方程可求得结果【详解】因为双曲线的一个焦点为,所以,,所以,解得,故选:B5、C【解析】根据等方差数列的定义,结合等差数列的通项公式,运用裂项相消法进行求解即可.【详解】因为是方公差为4的等方差数列,所以,,∴,∴,∴,故选:C6、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A7、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.8、C【解析】根据条件列关于首项与公比的方程组,即可解得公比,注意等比数列求和公式使用条件.【详解】等比数列中,,前三项之和,若,,,符合题意;若,则,解得,即公比的值为1或,故选:C【点睛】本题考查等比数列求和公式以及基本量计算,考查基本分析求解能力,属基础题.9、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.10、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D11、A【解析】利用导数来求得的极值.【详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A12、B【解析】设等比数列的公比为,根据等比数列的通项公式得到,即可求出,再根据计算可得;【详解】解:设等比数列公比为,因为、,所以,所以;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据向量的加减法运算法则及数乘运算求解即可.【详解】由向量的减法及加法运算可得,,故答案为:14、①.2②.7578【解析】根据前四项成等比数列及定义可求得,根据新定义得数列是周期数列,从而易求得【详解】∵成等比数列,,,又,为“和谐递进数列”,,,,,…,数列是周期数列,周期为4,故答案为:2,757815、【解析】设出点,,,的坐标,表示出直线,的斜率,作和后利用基本不等式求最值,利用离心率求得与的关系,则答案可求详解】解:设,,,,,,,,,,,当且仅当,即时等号成立,是椭圆长轴的两个端点,,是椭圆上关于轴对称的两点,,,即,的最小值为,椭圆的离心率为,,即,得,的最小值为故答案为:16、6【解析】化简得出,由化简后根据均值不等式建立不等式,求解二次不等式即可得解.【详解】,由得:,(当且仅当时取等号),所以的最小值为6.故答案为:6三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)由、两点坐标求出直线的垂直平分线的方程与直线上联立可得圆心坐标,由两点间距离公式求出半径,即可得圆的标准方程;(2)设直线的方程,求出圆心到直线的距离,再由垂径定理结合勾股定理列方程求出的值,即可得直线的方程【详解】由点、可得中点坐标为,,所以直线的垂直平分线的斜率为,可得直线的垂直平分线的方程为:即,由可得:,所以圆心为,,所以的标准方程为,(2)设直线的方程为即,圆心到直线的距离,则可得,即,解得:或,所以直线的方程为或,即或18、(1)(2)不一定共线,理由见解析【解析】(1)由椭圆定义可得a,利用∽△BOA可解;(2)考察轴时的情况,分析可知M,,N不一定共线.【小问1详解】由题意得,,设,,代入椭圆C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以椭圆C的方程为.【小问2详解】当轴时,,设,,则由已知条件和方程,可得,整理得,,解得或.由于,所以当时,点M,,N共线;所以当时,点M,,N不共线.所以点M,,N不一定共线.19、(1)证明见解析,;(2).【解析】(1)利用给定的递推公式变形,再利用等比数列定义直接判断并求出通项得解.(2)由(1)的结论求出,再利用裂项相消法计算作答.【小问1详解】数列{}中,,则,由得:,所以数列是首项为3,公比为2的等比数列,则有,即,所以数列{}的通项公式是.【小问2详解】由(1)知,,,则,所以数列{}的前n项和.20、(1)抛物线C的方程为,准线方程为(2)或.【解析】(1)将点代入抛物线求出即可得出抛物线方程和准线方程;(2)设出直线方程,与抛物线联立,表示出弦长和即可求出.【小问1详解】将代入可得,解得,所以抛物线C的方程为,准线方程为;【小问2详解】由题得,设直线方程为,,设,联立方程,可得,则,所以,因为直线与准线交于点Q,则,则,因为,所以,解得,所以直线l的方程为或.21、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026浙江温州市瓯海区第三人民医院招聘2人备考题库必考题
- 浙江国企招聘-2025台州市椒江工业投资集团有限公司公开招聘工作人员7人的备考题库必考题
- 浙江国企招聘-2026年绍兴嵊州市水务投资发展集团有限公司公开招聘工作人员8人备考题库必考题
- 2026湖北省定向中国海洋大学选调生招录备考题库必考题
- 2025广东东莞市公安局樟木头分局警务辅助人员招聘14人(第3批)参考题库附答案
- 湖北省襄阳市2025-2026学年八年级上学期期末语文试题(有解析)
- 民治水电站“9·10”高位滑坡220kV送出工程建设项目环境影响报告表
- 甘肃省审计厅直属事业单位招聘考试真题2025
- 2025年铜仁市国企考试真题
- 2026北京大学国家卫生健康委员会神经科学重点实验室主任招聘1人备考题库含答案详解
- 2025年接触网覆冰舞动处置预案
- 剪映电脑剪辑课件
- 人教版七年级英语上册全册语法知识点梳理
- 母乳喂养的新进展
- 2025年浙江省中考科学试题卷(含答案解析)
- 要素式民事起诉状(房屋租赁合同纠纷)
- 急性呼吸窘迫综合征病例讨论
- DB11∕T 510-2024 公共建筑节能工程施工质量验收规程
- 英语沪教版5年级下册
- T/CPFIA 0005-2022含聚合态磷复合肥料
- GB/T 43590.507-2025激光显示器件第5-7部分:激光扫描显示在散斑影响下的图像质量测试方法
评论
0/150
提交评论