江苏省沭阳县修远中学、泗洪县洪翔中学2026届数学高二上期末统考模拟试题含解析_第1页
江苏省沭阳县修远中学、泗洪县洪翔中学2026届数学高二上期末统考模拟试题含解析_第2页
江苏省沭阳县修远中学、泗洪县洪翔中学2026届数学高二上期末统考模拟试题含解析_第3页
江苏省沭阳县修远中学、泗洪县洪翔中学2026届数学高二上期末统考模拟试题含解析_第4页
江苏省沭阳县修远中学、泗洪县洪翔中学2026届数学高二上期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省沭阳县修远中学、泗洪县洪翔中学2026届数学高二上期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知数列的通项公式为,则“”是“数列为单调递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.“”是“直线和直线垂直”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件4.已知为虚数单位,复数满足为纯虚数,则的虚部为()A. B.C. D.5.已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6 B.5C.4 D.26.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则7.已知点到直线:的距离为1,则等于()A. B.C. D.8.椭圆C:的焦点在x轴上,其离心率为则椭圆C的长轴长为()A.2 B.C.4 D.89.数列是公差不为零的等差数列,为其前n项和.若对任意的,都有,则的值不可能是()A. B.2C. D.310.已知椭圆与双曲线有共同的焦点,则()A.14 B.9C.4 D.211.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.912.已知是双曲线的左焦点,圆与双曲线在第一象限的交点为,若的中点在双曲线的渐近线上,则此双曲线的离心率是()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,为两曲线的一个公共点,且(为坐标原点).若,则的取值范围是______14.如图,在等腰直角中,,为半圆弧上异于,的动点,当半圆弧绕旋转的过程中,有下列判断:①存在点,使得;②存在点,使得;③四面体的体积既有最大值又有最小值:④若二面角为直二面角,则直线与平面所成角的最大值为45°.其中正确的是______(请填上所有你认为正确的结果的序号).15.已知不等式有且只有两个整数解,则实数a的范围为___________16.已知数列的前项和.则数列的通项公式为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由18.(12分)如图,在四棱锥P-ABCD中,底面四边形ABCD为直角梯形,,,,O为BD的中点,,(1)证明:平面ABCD;(2)求平面PAD与平面PBC所成锐二面角的余弦值19.(12分)如图,四棱锥中,是边长为2的正三角形,底面为菱形,且平面平面,,为上一点,满足.(1)证明:;(2)求二面角的余弦值.20.(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)若不过点的直线交椭圆于两点,求面积的最大值.21.(12分)如图,多面体中,平面平面,,四边形为平行四边形.(1)证明:;(2)若,求二面角的余弦值.22.(10分)如图,已知椭圆的左顶点,过右焦点的直线与椭圆相交于两点,当直线轴时,.(1)求椭圆的方程;(2)记,的面积分别为,求的取值范围;(3)若的重心在圆上,求直线的斜率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B2、A【解析】根据充分条件和必要条件的定义,结合数列的单调性判断【详解】根据题意,已知数列的通项公式为,若数列为单调递增数列,则有(),所以,因为,所以,所以当时,数列为单调递增数列,而当数列为单调递增数列时,不一定成立,所以“”是“数列为单调递增数列”的充分而不必要条件,故选:A3、A【解析】根据直线垂直求出值即可得答案.【详解】解:若直线和直线垂直,则,解得或,则“”是“直线和直线垂直”的充分非必要条件.故选:A.4、D【解析】先设,代入化简,由纯虚数定义求出,即可求解.【详解】设,所以,因为为纯虚数,所以,解得,所以的虚部为:.故选:D.5、B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B6、C【解析】利用不等式的性质结合特殊值法依次判断即可【详解】当c=0时,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1时,,D不成立;由a>|b|知a>0,所以a2>b2,C正确故选:C7、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.8、C【解析】根据椭圆的离心率,即可求出,进而求出长轴长.【详解】由椭圆的性质可知,椭圆的离心率为,则,即所以椭圆C的长轴长为故选:C.【点睛】本题主要考查了椭圆的几何性质,属于基础题.9、A【解析】由已知建立不等式组,可求得,再对各选项逐一验证可得选项.【详解】解:因为数列是公差不为零的等差数列,为其前n项和.对任意的,都有,所以,即,解得,则当时,,不成立;当时,,成立;当时,,成立;当时,,成立;所以的值不可能是,故选:A.10、C【解析】根据给定条件结合椭圆、双曲线方程的特点直接列式计算作答.【详解】设椭圆半焦距为c,则,而椭圆与双曲线有共同的焦点,则在双曲线中,,即有,解得,所以.故选:C11、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B12、A【解析】根据双曲线的几何性质和平面几何性质,建立关于a,b,c的方程,从而可求得双曲线的离心率得选项.【详解】由题意可设右焦点为,因为,且圆:,所以点在以焦距为直径的圆上,则,设的中点为点,则为的中位线,所以,则,又点在渐近线上,所以,且,则,,所以,所以,则在中,可得,,即,解得,所以,故选:A【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答,【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案为:【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得值,根据离心率的定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.14、①②④【解析】①当D为中点,且A,B,C,D四点共面时,可证得四边形ABCD为正方形即可判断①;②当D在平面ABC内的射影E在线段BC上(不含端点)时,可知平面ABC,可证得平面CDB,即可判断②;③,研究临界值即可判断③;④二面角D-AC-B为直二面角,且D为中点时,直线DB与平面ABC所成角的最大,作图分析验证可判断④.【详解】①当D为中点,且A,B,C,D四点共面时,连结BD,交AC于,则为AC中点,此时,且,所以四边形ABCD为正方形,所以AB//CD,故①正确;②当D在平面ABC内的射影E在线段BC上(不含端点)时,此时有:平面ABC,,又因为,所以平面CDB,所以,故②正确;③,当平面平面ABC,且D为中点时,h有最大值;当A,B,C,D四点共面时h有最小值0,此时为平面图形,不是立体图形,故四面体D-ABC无最小值,故③错误.④二面角D-AC-B为直二面角,且D为中点时,直线DB与平面ABC所成角的最大,取AC中点O,连结DO,BO,则,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以为直线DB与平面ABC所成角,设,则,,所以为等腰直角三角形,所以,直线与平面所成角的最大值为45°,故④正确.故答案为:①②④.15、【解析】参变分离后研究函数单调性及极值,结合与相邻的整数点的函数值大小关系求出实数a的范围.【详解】整理为:,即函数在上方及线上存在两个整数点,,故显然在上单调递增,在上单调递减,且与相邻的整数点的函数值为:,,,,显然有,要恰有两个整数点,则为0和1,此时,解得:,如图故答案为:16、【解析】根据公式求解即可.【详解】解:当时,当时,因为也适合此等式,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.18、(1)见解析(2)【解析】(1)连接,利用勾股定理证明,又可证明,根据线面垂直的判定定理证明即可;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面和平面的法向量,由向量的夹角公式求解即可小问1详解】证明:如图,连接,在中,由,可得,因为,,所以,,因为,,,则,故,因为,,,平面,则平面;【小问2详解】解:由(1)可知,,,两两垂直,以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,0,,,2,,,0,,所以,则,,,又,设平面的法向量为,则,令,则,,故,设平面的法向量为,因为,所以,令,则,,故,所以,故平面与平面所成锐二面角的余弦值为19、(1)证明见解析;(2).【解析】(1)设为中点,连接,根据,证明平面得到答案.(2)以为原点,,,分别为,,轴建立空间直角坐标系,计算各点坐标,计算平面和平面的法向量,根据向量夹角公式计算得到答案.【详解】(1)设为中点,连接,,∵,∴,又∵底面四边形为菱形,,∴为等边三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以为原点,,,分别为,,轴建立空间直角坐标系,则,,,,,,由,,,即,∴,,,设为平面的法向量,则由,令,得,,∴,设为平面的法向量,则由,令,得,,∴,设二面角的平面角为,则,∴二面角的的余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力,建立空间直角坐标系是解题的关键.20、(1);(2).【解析】(1)根据,可设,,求出,得到椭圆的方程,代入点的坐标,求出,即可得出结果.(2)设出点,的坐标,直线与椭圆方程联立,利用韦达定理求出弦长,由点到直线的距离公式,三角形的面积公式及基本不等式可得结论.【详解】(1)因为,所以设,,则,椭圆的方程为.代入点的坐标得,,所以椭圆的方程为.(2)设点,的坐标分别为,,由,得,即,,,,.,点到直线的距离,的面积,当且仅当,即时等号成立.所以当时,面积的最大值为.【点睛】本题主要考查了椭圆的标准方程和性质,直线与椭圆相交问题.属于中档题.21、(1)证明见解析(2)【解析】(1)先通过平面平面得到,再结合,可得平面,进而可得结论;(2)取的中点,的中点,连接,,以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,求这两个法向量的夹角即可得结果.【详解】解:(1)因为平面平面,交线为,又,所以平面,,又,,则平面,平面,所以,;(2)取的中点,的中点,连接,,则平面,平面;以点坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系如图所示,已知,则,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论