版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省孙吴县第一中学2026届高二数学第一学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面内有一点,平面的一个法向量为,则下列四个点中在平面内的是()A. B.C. D.2.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.3.在区间内随机取一个数x,则使得的概率为()A. B.C. D.4.已知等比数列满足,,则数列前6项的和()A.510 B.126C.256 D.5125.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值6.已知关于的不等式的解集是,则的值是()A. B.5C. D.77.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.8.过点的直线与圆相切,则直线的方程为()A.或 B.或C.或 D.或9.已知、分别是双曲线的左、右焦点,为一条渐近线上的一点,且,则的面积为()A. B.C. D.110.已知圆,圆C2:x2+y2-x-4y+7=0,则“a=1”是“两圆内切”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件11.命题“若α=,则tanα=1”的逆否命题是A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠ D.若tanα≠1,则α=12.如果直线与直线垂直,那么的值为()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆截得的弦长为_______14.已知数列{an}的前n项和Sn=n2+n,则an=_____15.直线的倾斜角的取值范围是______.16.已知几何体如图所示,其中四边形ABCD,CDGF,ADGE均为正方形,且边长为1,点M在DG上,若直线MB与平面BEF所成的角为45°,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.18.(12分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程19.(12分)已知平面内两点,,动点P满足(1)求动点P的轨迹方程;(2)过定点的直线l交动点P的轨迹于不同的两点M,N,点M关于y轴对称点为,求证直线过定点,并求出定点坐标20.(12分)已知圆.(1)若直线与圆相交于两点,弦的中点为,求直线的方程;(2)若斜率为1的直线被圆截得的弦为,以为直径的圆经过圆的圆心,求直线的方程.21.(12分)设等差数列的前项和为(1)求的通项公式;(2)求数列的前项和22.(10分)某学校一航模小组进行飞机模型飞行高度实验,飞机模型在第一分钟时间内上升了米高度.若通过动力控制系统,可使飞机模型在以后的每一分钟上升的高度都是它在前一分钟上升高度的(1)在此动力控制系统下,该飞机模型在第三分钟内上升的高度是多少米?(2)这个飞机模型上升的最大高度能超过米吗?如果能,求出从第几分钟开始高度超过米;如果不能,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设所求点的坐标为,由,逐一验证选项即可【详解】设所求点的坐标为,则,因为平面的一个法向量为,所以,,对于选项A,,对于选项B,,对于选项C,,对于选项D,故选:A2、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.3、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.4、B【解析】设等比数列的公比为,由题设条件,求得,再结合等比数列的求和公式,即可求解.【详解】设等比数列的公比为,因为,,可得,解得,所以数列前6项的和.故选:B.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的前项和公式的应用,其中解答中熟记等比数列的通项公式和求和公式,准确计算是解答的关键,着重考查推理与运算能力.5、D【解析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减6、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D7、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C8、D【解析】根据斜率存在和不存在分类讨论,斜率存在时设直线方程,由圆心到直线距离等于半径求解【详解】圆心为,半径为2,斜率不存在时,直线满足题意,斜率存在时,设直线方程为,即,由,得,直线方程为,即故选:D9、A【解析】先表示出渐近线方程,设出点坐标,利用,解出点坐标,再按照面积公式求解即可.【详解】由题意知,双曲线渐近线方程为,不妨设在上,设,由得,解得,的面积为.故选:A.10、B【解析】先得出圆的圆心和半径,求出两圆心间的距离,半径之差,根据两圆内切得出方程,从而得出答案.【详解】圆的圆心半径的圆心半径两圆心之间的距离为两圆的半径之差为当两圆内切时,,解得或所以当,可得两圆内切,当两圆内切时,不能得出(可能)故“”是“两圆内切”的充分不必要条件故选:B11、C【解析】因为“若,则”的逆否命题为“若,则”,所以“若α=,则tanα=1”的逆否命题是“若tanα≠1,则α≠”.【点评】本题考查了“若p,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.12、A【解析】根据两条直线垂直列方程,化简求得的值.【详解】由于直线与直线垂直,所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出圆心到直线的距离,结合半径,利用勾股定理可得答案.【详解】的圆心坐标为,,圆心到直线的距离,则直线被圆截得的弦长为:故答案为:14、2n【解析】根据数列的通项与前n项和的关系求解即可.【详解】由题,当时,,当时.当时也满足.故.故答案为:【点睛】本题主要考查了根据数列的通项与前n项和的关系求通项公式的方法,属于基础题.15、【解析】先求出直线的斜率取值范围,再根据斜率与倾斜角的关系,即可求出【详解】可化为:,所以,由于,结合函数在上的图象,可知故答案为:【点睛】本题主要考查斜率与倾斜角的关系的应用,以及直线的一般式化斜截式,属于基础题16、##【解析】把该几何体补成一个正方体,如图,利用正方体的性质证明面面垂直得出直线MB与平面BEF所成的角,然后计算可得【详解】把该几何体补成一个正方体,如图,,连接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面内的直线在平面上的射影是,即是直线MB与平面BEF所成的角,,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用两边取自然对数,利用表中的数据即可求解;(2)分别计算模型①、②在时残差;(3)根据相关指数的大小判断摸型①、②的残差平方和,再得出那个模型的拟合效果更好.【小问1详解】由,得,令,得,由表Ⅱ数据可得,,,所以,所以回归方程为(或).【小问2详解】由题意可知,模型①在时残差为,模型②在时残差为.【小问3详解】因为,即模型①的相关指数大于模型②的相关指数,由相关指数公式知,模型①的残差平方和小于模型②的残差平方和,因此模型①得到的数据更接近真实数据,所以模型①的拟合效果更好.18、(1);(2)或【解析】(1)根据椭圆的焦距为2,离心率为,求出,,即可求椭圆的方程;(2)设直线方程为,代入椭圆方程,由得,利用韦达定理,化简可得,求出,即可求直线的方程.试题解析:(1)设椭圆方程为,因为,所以,所求椭圆方程为.(2)由题得直线l的斜率存在,设直线l方程为y=kx+1,则由得,且.设,则由得,又,所以消去得,解得,,所以直线的方程为,即或.19、(1)(2)证明见解析,定点坐标为【解析】(1)直接由斜率关系计算得到;(2)设出直线,联立椭圆方程,韦达定理求出,再结合三点共线,求出参数,得到过定点.小问1详解】设动点,由已知有,整理得,所以动点的轨迹方程为;【小问2详解】由已知条件可知直线和直线斜率一定存在,设直线方程为,,,则,由,可得,则,即为,,,因为直线过定点,所以三点共线,即,即,即,即,即得,整理,得,满足,则直线方程为,恒过定点.【点睛】本题关键在于设出带有两个参数的直线的方程,联立椭圆方程后,利用题干中的条件,解出一个参数或得到两个参数之间的关系,即可求出定点.20、(1)(或(2)或【解析】(1)由条件可得,由此可求直线的斜率,由点斜式求直线的方程;(2)由条件可求到直线的距离,利用待定系数法求直线的方程.【小问1详解】圆,得圆心,半径,直线的斜率:,设直线的斜率为,有,解得.所求直线的方程为:.(或【小问2详解】直线m被圆C截得的弦EF为直径的圆经过圆心C,∴圆心C到直线的距离为.设直线方䄇为,则解得或直线的方程为:或21、(1);(2).【解析】(1)根据等差数列前n项和求和公式求出首项和公差,进而求出通项公式;(2)结合(1)求出,再令得出数列的正数项和负数项,进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣州上犹县招社区工作者27人备考题库附答案
- 2026重庆农商银行招聘面试题及答案
- 2025江苏苏州市市级机关遴选公务员18人参考题库附答案
- 2026年合肥市五十中学西校教育集团心湖校区招聘教师参考题库必考题
- 综合给水蓄水池土建结构工程施工方案模板
- 2025年内蒙古鄂尔多斯羊绒服装集团绒纺事业部招聘笔试真题
- 江西省农业农村厅直属事业单位招聘考试真题2025
- 2026广东广州生物医药与健康研究院信息化与数据中心岗位招聘1人备考题库(中心副主任)参考答案详解
- 2026云南昆明市五华区人民法院招聘7人备考题库及答案详解(考点梳理)
- 2026云南普洱市澜沧县教育体育局招募基础银龄讲学教师20人备考题库及完整答案详解一套
- 2026年度新疆兵团草湖项目区公安局招聘警务辅助人员工作(100人)考试参考题库及答案解析
- 北京市丰台二中2026届数学高一上期末考试试题含解析
- LNG气化站安装工程施工设计方案
- 核酸口鼻采样培训
- 企业安全隐患排查课件
- 2025版《煤矿安全规程》宣贯解读课件(电气、监控与通信)
- (新教材)2026年部编人教版一年级下册语文 语文园地一 课件
- DB43-T 2066-2021 河湖管理范围划定技术规程
- 2025核电行业市场深度调研及发展趋势与商业化前景分析报告
- 急惊风中医护理查房
- 营地合作分成协议书
评论
0/150
提交评论