江西省高安二中2026届高二数学第一学期期末调研试题含解析_第1页
江西省高安二中2026届高二数学第一学期期末调研试题含解析_第2页
江西省高安二中2026届高二数学第一学期期末调研试题含解析_第3页
江西省高安二中2026届高二数学第一学期期末调研试题含解析_第4页
江西省高安二中2026届高二数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省高安二中2026届高二数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则()A. B.0C. D.12.设,则“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.4.直线的倾斜角为()A B.C. D.5.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A. B.C. D.6.在长方体中,,,点分别在棱上,,,则()A. B.C. D.7.已知椭圆的左、右顶点分别为,上、下顶点分别为.点为上不在坐标轴上的任意一点,且四条直线的斜率之积大于,则的离心率的取值范围是()A. B.C. D.8.饕餮(tāotiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点从点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.9.已知函数,,若对于任意的,存在唯一的,使得,则实数a的取值范围是()A(e,4) B.(e,4]C.(e,4) D.(,4]10.已知动点满足,则动点的轨迹是()A.椭圆 B.直线C.线段 D.圆11.设函数是定义在上的函数的导函数,有,若,,则,,的大小关系是()A. B.C. D.12.已知定义在上的函数满足下列三个条件:①当时,;②的图象关于轴对称;③,都有.则、、的大小关系是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________14.射击队某选手命中环数的概率如下表所示:命中环数10987概率0.320.280.180.120.1该选手射击两次,两次命中环数相互独立,则他至少命中一次9环或10环的概率为_________________.(结果用小数表示)15.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______16.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且,若,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的首项,(1)证明:数列是等比数列;(2)设且前项和为,求18.(12分)为了保证我国东海油气田海域海上平台的生产安全,海事部门在某平台O的北偏西45°方向km处设立观测点A,在平台O的正东方向12km处设立观测点B,规定经过O、A、B三点的圆以及其内部区域为安全预警区.如图所示:以O为坐标原点,O的正东方向为x轴正方向,建立平面直角坐标系(1)试写出A,B的坐标,并求两个观测点A,B之间的距离;(2)某日经观测发现,在该平台O正南10kmC处,有一艘轮船正以每小时km的速度沿北偏东45°方向行驶,如果航向不变,该轮船是否会进入安全预警区?如果不进入,请说明理由;如果进入,则它在安全警示区内会行驶多长时间?19.(12分)已知椭圆的右顶点为,上顶点为.离心率为,.(1)求椭圆的标准方程;(2)若,是椭圆上异于长轴端点的两点(斜率不为0),已知直线,且,垂足为,垂足为,若,且的面积是面积的5倍,求面积的最大值.20.(12分)已知函数(1)求在点处的切线方程(2)求直线与曲线围成的封闭图形的面积21.(12分)如图1是,,,,分别是边,上两点,且,将沿折起使得,如图2.(1)证明:图2中,平面;(2)图2中,求二面角的正切值.22.(10分)已知抛物线C的焦点为,N为抛物线上一点,且(1)求抛物线C的方程;(2)过点F且斜率为k的直线l与C交于A,B两点,,求直线l的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求导,再代入求值.详解】,所以.故选:B2、A【解析】根据两直线平行的充要条件求出a的值,然后可判断.【详解】当时,,所以两直线平行;若两直线平行,则且,解得或,所以,“”是“直线与直线平行”的充分不必要条件.故选:A3、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B4、C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【详解】设直线的倾斜角为,则,∵,所以.故选:C5、B【解析】此点取自该圆内接正六边形的概率是正六边形面积除以圆的面积,分别求出即可.【详解】如图,在单位圆中作其内接正六边形,该正六边形是六个边长等于半径的正三角形,其面积,圆的面积为则所求概率.故选:B【点睛】此题考查几何概率模型求解,关键在于准确求出正六边形的面积和圆的面积.6、D【解析】依题意可得,从而得到,即可得到,从而得解;【详解】解:由长方体的性质可得,又,所以,因为,所以,所以,因为,所以;故选:D7、A【解析】设,求得,得到,求得,结合,即可求解.【详解】由椭圆的方程,可得,设,则,由,因为四条直线的斜率之积大于,即,所以,则离心率,又因为椭圆离心率,所以椭圆的离心率的取值范围是.故选:A.8、B【解析】本题首先可根据题意列出次跳动的所有基本事件,然后找出沿着饕餮纹的路线到达点的事件,最后根据古典概型的概率计算公式即可得出结果.【详解】点从点出发,每次向右或向下跳一个单位长度,次跳动的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿着饕餮纹的路线到达点的事件有:(下,下,右),故到达点的概率,故选:B.9、B【解析】结合导数和二次函数的性质可求出和的值域,结合已知条件可得,,从而可求出实数a的取值范围.【详解】解:g(x)=x2ex的导函数为g′(x)=2xex+x2ex=x(x+2)ex,当时,,由时,,时,,可得g(x)在[–1,0]上单调递减,在(0,1]上单调递增,故g(x)在[–1,1]上的最小值为g(0)=0,最大值为g(1)=e,所以对于任意的,.因为开口向下,对称轴为轴,又,所以当时,,当时,,则函数在[,2]上的值域为[a–4,a],且函数f(x)在,图象关于轴对称,在(,2]上,函数单调递减.由题意,得,,可得a–4≤0<e<,解得ea≤4故选:B【点睛】本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是这一条件的转化.10、C【解析】根据两点之间的距离公式的几何意义即可判定出动点轨迹.【详解】由题意可知表示动点到点和点的距离之和等于,又因为点和点的距离等于,所以动点的轨迹为线段.故选:11、C【解析】设,求导分析的单调性,又,,,即可得出答案【详解】解:设,则,又因为,所以,所以在上单调递增,又,,,因为,所以,所以.故选:C12、A【解析】推导出函数为偶函数,结合已知条件可得出,,,利用导数可知函数在上为减函数,由此可得出、、的大小关系.【详解】因为函数的图象关于轴对称,则,故,,又因为,都有,所以,,所以,,,,因为当时,,,当且仅当时,等号成立,且不恒为零,故函数在上为减函数,因为,则,故.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、200【解析】先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.【详解】由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取(人).因为每人被抽中的概率是0.2,所以青年职工共有(人).故答案:200.14、84【解析】先求出该选手射击两次,两次命中的环数都低于9环的概率,由对立事件的概率可得答案.【详解】该选手射击一次,命中的环数低于9环的概率为该选手射击两次,两次命中的环数都低于9环的概率为所以他至少命中一次9环或10环的概率为故答案:0.8415、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:16、3【解析】先求点坐标,再由已知得Q点坐标,由列方程得解.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,,,因为,所以,,所以3故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由已知变形得出,即可证得结论成立;(2)计算,利用并项求和法可求得.【小问1详解】证明:对任意的,,则,且,故数列为等比数列,且该数列的首项为,公比也为,故.【小问2详解】解:,所以,,因此,.18、(1);(2)会驶入安全预警区,行驶时长为半小时【解析】(1)先求出A,B的坐标,再由距离公式得出A,B之间的距离;(2)由三点的坐标列出方程组得出经过三点的圆的方程,设轮船航线所在的直线为,再由几何法得出直线与圆截得的弦长,进而得出安全警示区内行驶时长.【小问1详解】由题意得,∴;【小问2详解】设圆的方程为,因为该圆经过三点,∴,得到.所以该圆方程为:,化成标准方程为:.设轮船航线所在的直线为,则直线的方程为:,圆心(6,8)到直线的距离,所以直线与圆相交,即轮船会驶入安全预警区.直线与圆截得的弦长为,行驶时长小时.即在安全警示区内行驶时长为半小时.19、(1)(2)面积的最大值为【解析】(1)由离心率为,,得,解得,,,进而可得答案(2)设直线的方程为,,,,,联立直线与椭圆的方程,结合韦达定理可得,,由弦长公式可得,点到直线的距离,则,,由的面积是面积的5倍,解得,再计算的最大值,即可【小问1详解】解:因为离心率为,,所以,解得,,,所以【小问2详解】解:设直线的方程为,,,,,联立,得,所以,,所以,点到直线的距离,所以,,因为的面积是面积的5倍,所以所以或,又因为,是椭圆上异于长轴端点的两点,所以,所以,令,所以,因为在上单调递增,所以,(当时,取等号),所以面积的最大值为.20、(1)(2)2【解析】(1)首先求出函数的导函数,即可求出切线的斜率,再利用点斜式求出切线方程;(2)首先求出两函数的交点坐标,再利用定积分及微积分基本定理计算可得;【小问1详解】解:因为,所以,所以切线的斜率,切线过点,切线的方程为,即【小问2详解】解:由题知,即解得或,即或或,直线与曲线于则所求图形的面积21、(1)证明见解析(2)【解析】(1)、利用线面垂直的判定,及线面垂直的性质即可证明;(2)、建立空间直角坐标系,分别求出平面、平面的法向量,利用求出两平面所成角的余弦值,进而求出求二面角的正切值.【小问1详解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小问2详解】由(1)知:平面,以为坐标原点,建立如图所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论