2026届山西省临汾市侯马市502中学高一数学第一学期期末联考模拟试题含解析_第1页
2026届山西省临汾市侯马市502中学高一数学第一学期期末联考模拟试题含解析_第2页
2026届山西省临汾市侯马市502中学高一数学第一学期期末联考模拟试题含解析_第3页
2026届山西省临汾市侯马市502中学高一数学第一学期期末联考模拟试题含解析_第4页
2026届山西省临汾市侯马市502中学高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省临汾市侯马市502中学高一数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC2.函数的零点所在区间为()A. B.C. D.3.函数零点所在的大致区间的A. B.C. D.4.已知的定义域为,则函数的定义域为A. B.C. D.5.设集合,,则A. B.C. D.6.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-47.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为A. B.C. D.8.设,,则下面关系中正确的是()A B.C. D.9.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.10.2022年北京冬奥会将于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬奥会新增7个小项目,女子单人雪车为其中之一.下表是某国女子单人雪车集训队甲、乙两位队员十轮的比赛成绩,则下列说法正确的是()队员比赛成绩第一轮第二轮第三轮第四轮第五轮第六轮第七轮第八轮第九轮第十轮甲1分51秒741分51秒721分51秒751分51秒801分51秒901分51秒811分51秒721分51秒941分51秒741分51秒71乙1分51秒701分51秒801分51秒831分51秒831分51秒801分51秒841分51秒901分51秒721分51秒901分51秒91A.估计甲队员的比赛成绩的方差小于乙队员的比赛成绩的方差B.估计甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数C.估计甲队员的比赛成绩的平均数大于乙队员的比赛成绩的平均数D.估计甲队员的比赛成绩的中位数大于乙队员的比赛成绩的中位数二、填空题:本大题共6小题,每小题5分,共30分。11.某品牌笔记本电脑的成本不断降低,若每隔4年价格就降低,则现在价格为8100元的笔记本电脑,12年后的价格将降为__________元12.设函数,且;(1)若,求的最小值;(2)若在上能成立,求实数的取值范围13.已知函数的图像恒过定点A,若点A在一次函数的图像上,其中,则的最小值是__________14.已知,则__________.15.若函数在区间上为增函数,则实数的取值范围为______.16.若,,则=______;_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(a为常数,且),若(1)求a的值;(2)解不等式18.已知角的终边在第二象限,且与单位圆交于点(1)求的值;(2)求的值.19.已知定义在R上的函数(1)若,判断并证明的单调性;(2)解关于x的不等式.20.如图,四棱锥的底面为正方形,底面,分别是的中点.(1)求证:平面;(2)求证:平面平面.21.已知函数.(1)若为偶函数,求实数m的值;(2)当时,若不等式对任意恒成立,求实数a的取值范围;(3)当时,关于x的方程在区间上恰有两个不同的实数解,求实数m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由斜二测画法得到原三角形,结合其几何特征易得答案.【详解】由题意得到原△ABC的平面图为:其中,AD⊥BC,BD>DC,∴AB>AC>AD,∴△ABC的AB、AD、AC三条线段中最长的是AB,最短的是AD故选C【点睛】本题考查了斜二测画法,考查三角形中三条线段长的大小的比较,属于基础题2、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B3、B【解析】函数是单调递增函数,则只需时,函数在区间(a,b)上存在零点.【详解】函数,x>0上单调递增,,函数f(x)零点所在的大致区间是;故选B【点睛】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b)连续,若确定零点所在的区间.4、B【解析】因为函数的定义域为,故函数有意义只需即可,解得,选B考点:1、函数的定义域的概念;2、复合函数求定义域5、D【解析】详解】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.6、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题7、D【解析】由几何体的正视图和俯视图可知,三棱锥的顶点在底面内的射影在底面棱上,则原几何体如图所示,从而侧视图为D.故选D8、D【解析】根据元素与集合关系,集合与集合的关系判断即可得解.【详解】解:因为,,所以,.故选:D.9、B【解析】构造函数,通过表格判断,判断零点所在区间,即得结果.【详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.10、B【解析】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较.根据中位数、平均数、方差的计算方法求出中位数、平均数、方差比较即可得到答案【详解】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较,作茎叶图如图:由图可知,甲的成绩主要集中在70-75之间,乙的成绩主要集中在80-90之间,∴甲的成绩的平均数小于乙的成绩的平均数,故C错误;由图可知甲的成绩中位数为74.5,乙成绩的中位数为83,故甲队员的比赛成绩的中位数小于乙队员的比赛成绩的中位数,故D错误;甲队员比赛成绩平均数为:,乙队员比赛成绩平均数为:,∴甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数,故B正确;甲队员的比赛成绩的方差为:=57.41,乙队员的比赛成绩的方差为:=46.61,∴甲队员的比赛成绩的方差大于乙队员的比赛成绩的方差,故A错误故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、2400【解析】由题意直接利用指数幂的运算得到结果【详解】12年后的价格可降为81002400元故答案为2400【点睛】本题考查了指数函数模型的应用,考查了推理能力与计算能力,属于基础题12、(1)3(2)或【解析】(1)由可得,再利用基本不等式中乘“1”法的应用计算可得;(2)将已知转化为不等式有解,再对参数分类讨论,分别计算可得.【小问1详解】函数,由,可得,所以,当时等号成立,又,,,解得时等号成立,所以的最小值是3.【小问2详解】由题知,在上能成立,即能成立,即不等式有解①当时,不等式的解集为,满足题意;②当时,二次函数开口向下,必存在解,满足题意;③当时,需,解得或综上,实数的取值范围是或13、8【解析】可得定点,代入一次函数得,利用展开由基本不等式求解.【详解】由可得当时,,故,点A在一次函数的图像上,,即,,,当且仅当,即时等号成立,故的最小值是8.故答案为:8.【点睛】本题考查基本不等式的应用,解题的关键是得出定点A,代入一次函数得出,利用“1”的妙用求解.14、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:315、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:16、①.②.【解析】首先指对互化,求,再求;第二问利用指数运算,对数,化简求值.【详解】,,所以;,,所以故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3;(2).【解析】(1)由即得;(2)利用指数函数单调性即求.【小问1详解】∵函数,,∴,∴.小问2详解】由(1)知,由,得∴,即,∴解集为.18、【解析】(1)先求出,再求出的值.(2)先利用诱导公式化简,再把tan的值代入求解.【详解】(1)由题得因为角终边在第二象限,所以所以.(2)=.【点睛】本题主要考查三角函数的坐标定义,考查同角的商数关系和诱导公式,意在考查学生对这些知识的掌握水平和分析推理能力.19、(1)在定义域R内单调递增;证明见解析(2)答案见解析【解析】(1)根据题意,利用待定系数法求出的值,即可得函数的解析式,利用作差法分析可得结论;(2)根据题意,,即,求出的取值范围,按的取值范围分情况讨论,求出不等式的解集,即可得答案【小问1详解】若,则a=3,,在定义域R内单调递增;证明如下:任取,,且.则,根据单调递增的定义可知在定义域R内单调递增;【小问2详解】由,即,即,得,当a>1时,的解为;当0<a<1时,的解为.综上所述,当a>1时,原不等式的解为;当0<a<1时,原不等式的解为.20、(1)证明见解析;(2)证明见解析.【解析】(1)连接BD,根据线面平行的判定定理只需证明EF∥PD即可;(2)利用线面垂直的判定定理可得面,再利用面面垂直的判定定理即证【小问1详解】如图,连结,则是的中点,又是的中点,∴,又∵平面,面,∴平面;【小问2详解】∵底面是正方形,∴,∵平面,平面,∴,又,∴面,又平面,故平面平面.21、(1)-1;(2);(3)【解析】(1)根据偶函数解得:m=-1,再用定义法进行证明;(2)记,判断出在上单增,列不等式组求出实数a的取值范围;(3)先判断出在R上单增且,令,把问题转化为在上有两根,令,,利用图像有两个交点,列不等式求出实数m的取值范围.【小问1详解】定义域为R.因为为偶函数,所以,即,解得:m=-1.此时,所以所以偶函数,所以m=-1.【小问2详解】当时,不等式可化为:,即对任意恒成立.记,只需.因为在上单增,在上单增,所以在上单增,所以,所以,解得:,即实数a的取值范围为.【小问3详解】当时,在R上单增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论