江苏南京玄武区2026届数学高二上期末预测试题含解析_第1页
江苏南京玄武区2026届数学高二上期末预测试题含解析_第2页
江苏南京玄武区2026届数学高二上期末预测试题含解析_第3页
江苏南京玄武区2026届数学高二上期末预测试题含解析_第4页
江苏南京玄武区2026届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏南京玄武区2026届数学高二上期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列,则()A.96 B.97C.98 D.992.在等比数列{}中,,,则=()A.9 B.12C.±9 D.±123.记等差数列的前n项和为,若,,则等于()A.5 B.31C.38 D.414.下列说法错误的是()A.命题“,”的否定是“,”B.若“”是“或”的充分不必要条件,则实数m的最大值为2021C.“”是“函数在内有零点”的必要不充分条件D.已知,且,则的最小值为95.若,则()A B.C. D.6.已知等比数列中,,则这个数列的公比是()A.2 B.4C.8 D.167.已知椭圆的左、右焦点分别为,,直线过且与椭圆相交于不同的两点,、不在轴上,那么△的周长()A.是定值B.是定值C.不是定值,与直线的倾斜角大小有关D.不是定值,与取值大小有关8.若执行如图所示的程序框图,则输出S的值是()A.18 B.78C.6 D.509.等比数列中,,则()A. B.C.2 D.410.设函数,则和的值分别为()A.、 B.、C.、 D.、11.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.12.十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年),他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列.依此规则,插入的第四个数应为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.计算:________14.已知椭圆的右顶点为A,上顶点为B,且直线l与椭圆交于C,D两点,若直线l直线AB,设直线AC,BD的斜率分别为,,则的值为___________.15.在等比数列中,已知,则__________16.过点作圆的两条切线,切点为A,B,则直线的一般式方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}满足*(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn18.(12分)已知.(1)当,时,求中含项的系数;(2)用、表示,写出推理过程19.(12分)如图,在长方体中,,,,M为上一点,且(1)求点到平面的距离;(2)求二面角的余弦值20.(12分)已知点为抛物线的焦点,点在抛物线上,的面积为1.(1)求抛物线的标准方程;(2)设点是抛物线上异于点的一点,直线与直线交于点,过作轴的垂线交抛物线于点,求证:直线过定点.21.(12分)设函数,(1)求的最大值;(2)求证:对于任意x∈(1,7),e1-x+22.(10分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】令,利用倒序相加原理计算即可得出结果.【详解】令,,两式相加得:,∴,故选:C2、D【解析】根据题意,设等比数列的公比为,由等比数列的性质求出,再求出【详解】根据题意,设等比数列的公比为,若,,则,变形可得,则,故选:3、A【解析】设等差数列的公差为d,首先根据题意得到,再解方程组即可得到答案.【详解】解:设等差数列的公差为d,由题知:,解得.故选:A.4、C【解析】对于A:用存在量词否定全称命题,直接判断;对于B:根据充分不必要条件直接判断;对于C:判断出“”是“函数在内有零点”的充分不必要条件,即可判断;对于D:利用基本不等式求最值.【详解】对于A:用存在量词否定全称命题,所以命题“,”的否定是“,”.故A正确;对于B:若“”是“或”的充分不必要条件,所以,即实数m的最大值为2021.故B正确;对于C:“函数在内有零点”,则,解得:或,所以“”是“函数在内有零点”的充分不必要条件.故C错误;对于D:已知,且,所以(当且仅当,即时取等号)故D正确.故选:C5、D【解析】直接利用向量的坐标运算求解即可【详解】因为,所以,故选:D6、A【解析】直接利用公式计算即可.【详解】设等比数列的公比为,由已知,,所以,解得.故选:A7、B【解析】由直线过且与椭圆相交于不同的两点,,且,为椭圆两焦点,根据椭圆的定义即可得△的周长为,则答案可求【详解】椭圆,椭圆的长轴长为,∴△的周长为故选:B8、A【解析】根据框图逐项计算后可得正确的选项.【详解】第一次循环前,;第二次循环前,;第三次循环前,;第四次循环前,;第五次循环前,此时满足条件,循环结束,输出S的值是18故选:A9、D【解析】利用等比数列的下标特点,即可得到结果.【详解】∵,∴,∴,∴.故选:D10、D【解析】求得,即可求得、的值.【详解】,则,则,故,.故选:D.11、B【解析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.12、C【解析】先求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】用表示这个数列,依题意,,则,,第四个数即.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据无穷等比数列的求和公式直接即可求出答案.【详解】.故答案为:.14、##0.25【解析】求出点A,B坐标,设出直线l的方程,联立直线l与椭圆方程,借助韦达定理即可计算作答.【详解】依题意,点,直线AB斜率为,因直线l直线AB,则设直线l方程为:,,由消去y并整理得:,,解得,于是有或,设,则,有,因此,,所以的值为.故答案:15、32【解析】根据已知求出公比即可求出答案.【详解】设等比数列的公比为,则,则,所以.故答案为:32.16、【解析】已知圆的圆心,点在以为直径的圆上,两圆相减就是直线的方程.【详解】,圆心,点在以为直径的圆上,,所以圆心是,以为直径的圆的圆的方程是,直线是两圆相交的公共弦所在直线,所以两圆相减就是直线的方程,,所以直线的一般式方程为.故答案为:【点睛】结论点睛:过圆外一点引圆的切线,那么以圆心和圆外一点连线段为直径的圆与已知圆相减,就是切点所在直线方程,或是两圆相交,两圆相减,就是公共弦所在直线方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据递推关系式可得,再由等差数列的定义以及通项公式即可求解.(2)利用错位相减法即可求解.【小问1详解】(1),即,所以数列为等差数列,公差为1,首项为1,所以,即.【小问2详解】令,所以,所以18、(1)(2),过程见解析【解析】(1)写出函数的解析式,利用二项式定理可求得函数中含项的系数;(2)利用错位相减法化简函数的解析式,求出解析式中含项的系数,再结合组合数公式化简可得结果.【小问1详解】解:当,时,,的展开式通项为,此时,函数中含项的系数之和为.【小问2详解】解:因为,①则,②①②得,所以,,而为中含项的系数,而函数中含项的系数也可视为中含项的系数,故,且,故.19、(1)(2)【解析】(1)以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,利用空间向量求解,(2)求出和的法向量,利用空间向量求解【小问1详解】以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系由,,,,所以,,,因此,,,设平面的法向量,则,,所以,取,则,,于是,所以点到平面的距离【小问2详解】由,,设平面的法向量,则,,所以,取,则,,于是,由(1)知平面的法向量为,记二面角的平面角为,则,由图可知二面角为锐角,所以所求二面角的余弦值为20、(1)(2)证明见解析【解析】(1)由条件列方程求,由此可得抛物线方程;(2)方法一:联立直线与抛物线方程,结合条件三点共线,可证明直线过定点,方法二:联立直线与抛物线方程,联立直线与直线求,由垂直与轴列方程化简,可证明直线过定点.【小问1详解】因为点在抛物线上,所以,即,,因为,故解得,抛物线的标准方程为【小问2详解】设直线的方程为,由,得,所以,由(1)可知当时,,此时直线的方程为,若时,因为三点共线,所以,即,又因为,,化简可得,又,进而可得,整理得,因为所以,此时直线的方程为,直线恒过定点又直线也过点,综上:直线过定点解法二:设方程,得若直线斜率存在时斜率方程为即解得:,于是有整理得.(*)代入上式可得所以直线方程为直线过定点.若直线斜率不存在时,直线方程为所以P点坐标为,M点坐标为此时直线方程为过点综上:直线过定点.【点睛】解决直线与抛物线的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题21、(1)(2)证明见解析【解析】(1)求出,讨论其导数后可得原函数的单调性,从而可得函数的最大值.(2)先证明任意的,总有,再利用放缩法和换元法将不等式成立问题转化为任意恒成立,后者可利用导数证明.【小问1详解】,当时,;当时,,故在上为增函数,在上为减函数,故.【小问2详解】因为,故当时,,即,而在为减函数,故在上有,故任意的,总有.要证任意恒成立,即证:任意恒成立,即证:任意恒成立,由(1)可得,任意,有即,故即证:任意恒成立,设,即证:任意恒成立,即证:任意恒成立,即证:任意恒成立,即证:任意恒成立,设,则,而在为增函数,,故存在,使得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论