版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届许昌市重点中学数学高三第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A. B. C. D.以上都不对2.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30 B. C. D.623.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.984.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.55.数列满足,且,,则()A. B.9 C. D.76.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为()A.1 B.2 C.-1 D.-27.执行如图所示的程序框图若输入,则输出的的值为()A. B. C. D.8.已知集合,,若,则的最小值为()A.1 B.2 C.3 D.49.已知实数满足则的最大值为()A.2 B. C.1 D.010.已知集合,,则()A. B.C. D.11.在中,,则()A. B. C. D.12.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量与的夹角为,||=||=1,且⊥(λ),则实数_____.14.点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为__________.15.已知向量,满足,,,则向量在的夹角为______.16.(x+y)(2x-y)5的展开式中x3y3的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412y51.522.58y与x可用回归方程(其中,为常数)进行模拟.(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.(Ⅱ)据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;(ⅱ)求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,,.18.(12分)如图所示,直角梯形ABCD中,,,,四边形EDCF为矩形,,平面平面ABCD.(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值.(3)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的长,若不存在,请说明理由.19.(12分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.20.(12分)在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.21.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.22.(10分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,,,,,,,,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,,共种情况,故随机选出两个不同的数,其和等于的概率.故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.2、B【解析】
根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.3、C【解析】
由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.4、D【解析】
根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,,,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.5、A【解析】
先由题意可得数列为等差数列,再根据,,可求出公差,即可求出.【详解】数列满足,则数列为等差数列,,,,,,,故选:.【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.6、D【解析】
由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.7、C【解析】
由程序语言依次计算,直到时输出即可【详解】程序的运行过程为当n=2时,时,,此时输出.故选:C【点睛】本题考查由程序框图计算输出结果,属于基础题8、B【解析】
解出,分别代入选项中的值进行验证.【详解】解:,.当时,,此时不成立.当时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.9、B【解析】
作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.10、C【解析】
求出集合,计算出和,即可得出结论.【详解】,,,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.11、A【解析】
先根据得到为的重心,从而,故可得,利用可得,故可计算的值.【详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A.【点睛】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.12、B【解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,,,,,,,,可得,,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
根据条件即可得出,由即可得出,进行数量积的运算即可求出λ.【详解】∵向量与的夹角为,||=||=1,且;∴;∴λ=1.故答案为:1.【点睛】考查向量数量积的运算及计算公式,以及向量垂直的充要条件.14、【解析】如图,是切点,是的中点,因为,所以,又,所以,,又,根据双曲线的定义,有,即,两边平方并化简得,所以,因此.15、【解析】
把平方利用数量积的运算化简即得解.【详解】因为,,,所以,∴,∴,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.16、40【解析】
先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】
(Ⅰ)根据参考数据得到和,代入得到回归直线方程,,再代入求成本,最后代入利润公式;(Ⅱ)(ⅰ)首先分别计算水果箱数在和内的天数,再用编号列举基本事件的方法求概率;(ⅱ)根据频率分布直方图直接计算结果.【详解】(Ⅰ)根据题意,,所以,所以.又,所以.所以时,(千元),即该新奇水果100箱的成本为8314元,故该新奇水果100箱的利润.(Ⅱ)(i)根据频率分布直方图,可知水果箱数在内的天数为设这两天分别为a,b,水果箱数在内的天数为,设这四天分别为A,B,C,D,所以随机抽取2天的基本结果为,,,,,,,,,,,,,,,共15种.满足恰有1天的水果箱数在内的结果为,,,,,,,,共8种,所以估计恰有1天的水果箱数在内的概率为.(ⅱ)这11天该农户每天为甲地配送的该新奇水果的箱数的平均值为(箱).【点睛】本题考查考查回归直线方程,统计,概率,均值的综合问题,意在考查分析数据,应用数据,解决问题的能力,属于中档题型.18、(I)见解析(II)(III)【解析】试题分析:(Ⅰ)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,由题意可得平面的法向量,且,据此有,则平面.(Ⅱ)由题意可得平面的法向量,结合(Ⅰ)的结论可得,即平面与平面所成锐二面角的余弦值为.(Ⅲ)设,,则,而平面的法向量,据此可得,解方程有或.据此计算可得.试题解析:(Ⅰ)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,如图,则,,,,∴,,设平面的法向量,∴不妨设,又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,设平面的法向量,∴不妨设,∴,∴平面与平面所成锐二面角的余弦值为.(Ⅲ)设,,∴,∴,又∵平面的法向量,∴,∴,∴或.当时,,∴;当时,,∴.综上,.19、(1)见解析;(2)(i)(ii)证明见解析【解析】
(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时,的解集为,的解集为,所以的单调增区间为,的单调减区间为;(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增,所以,即,因为,所以存在,使得,综上,;(ii)因为,所以,因为,所以,设,则,所以,解得,所以,所以,设,则,设,则,所以单调递增,所以,所以,即,所以单调递增,即随着的增大而增大,所以随着的增大而增大,命题得证.【点睛】此题考查利用导函数处理函数的单调性,根据函数的零点个数求参数的取值范围,通过等价转化证明与零点相关的命题.20、(1);(2)7.【解析】分析:(1)由三角形面积公式和已知条件求得sinA的值,进而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.详解:(1)∵,∴,∵为锐角,∴;(2)由余弦定理得:.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.21、(1)证明见解析;(2)证明见解析.【解析】
证明:(1)在矩形中,,又平面,平面,所以平面.(2)连结,交于点,连结,在矩形中,点为的中点,又,故,,又,平面,所以平面,又平面,所以平面平面.22、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】
(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加气混凝土蒸压养护工岗前工艺分析考核试卷含答案
- 照相机与辅助器材维修工岗前工作考核试卷含答案
- 我国上市公司并购溢价:基于实证分析的深度洞察与策略考量
- 油锯工岗前实操知识实践考核试卷含答案
- 妇幼保健员安全管理考核试卷含答案
- 化工单元操作工岗前风险识别考核试卷含答案
- 林木采伐工操作技能能力考核试卷含答案
- 土方机械装配调试工岗前创新应用考核试卷含答案
- 工艺扎染工安全理论考核试卷含答案
- 起重装卸机械操作工岗前生产安全意识考核试卷含答案
- 消防知识培训宣传课件
- 2025-2026学年通-用版英语 高一上学期期末试题(含听力音频答案)
- 2025年国家基本公共卫生服务考试试题(附答案)
- 25秋苏教三年级上册数学期末押题卷5套(含答案)
- 局部晚期肿瘤免疫放疗新策略
- 食品加工厂乳制品设备安装方案
- 高考英语3500词分类整合记忆手册(含完整中文释义)
- 鲁教版(2024)五四制英语七年级上册全册综合复习默写 (含答案)
- 内分泌科ICD编码课件
- 中医护理案例分享
- 骨密度检测的临床意义
评论
0/150
提交评论