版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市莘庄中学等四校2026届数学高二上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法正确的个数有()个①在中,若,则②是,,成等比数列的充要条件③直线是双曲线的一条渐近线④函数的导函数是,若,则是函数的极值点A.0 B.1C.2 D.32.已知圆的圆心到直线的距离为,则圆与圆的位置关系是()A.相交 B.内切C.外切 D.外离3.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-34.等差数列的前项和,若,则A.8 B.10C.12 D.145.已知命题对任意,总有;是方程的根则下列命题为真命题的是A. B.C. D.6.如图,把椭圆的长轴分成6等份,过每个分点作x轴的垂线交椭圆的上半部分于点,F是椭圆C的右焦点,则()A.20 B.C.36 D.307.随着城市生活节奏的加快,网上订餐成为很多上班族的选择,下表是某外卖骑手某时间段订餐数量与送餐里程的统计数据表:订餐数/份122331送餐里程/里153045现已求得上表数据的回归方程中的值为1.5,则据此回归模型可以预测,订餐100份外卖骑手所行驶的路程约为()A.155里 B.145里C.147里 D.148里8.围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率乙获胜概率丙获胜概率丁获胜概率则甲最终获得冠军的概率是()A.0.165 B.0.24C.0.275 D.0.369.如图,直三棱柱的所有棱长均相等,P是侧面内一点,设,若P到平面的距离为2d,则点P的轨迹是()A.圆的一部分 B.椭圆的一部分C.抛物线的一部分 D.双曲线的一部分10.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.11.双曲线:的实轴长为()A. B.C.4 D.212.设x∈R,则x<3是0<x<3的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.复数的共轭复数是__________14.已知数列满足,记,则______;数列的通项公式为______.15.若直线与直线相互平行,则实数___________.16.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单,某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,…,r,其中),约定:每天他首先从1号外卖店取单,称为第1次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单,称为第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件表示“第k次取单恰好是从1号店取单()”,是事件发生的概率,显然,,则______,与的关系式为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C:(1)若点,求过点的圆的切线方程;(2)若点为圆的弦的中点,求直线的方程18.(12分)已知圆.(1)若不过原点的直线与圆相切,且直线在两坐标轴上的截距相等,求直线的方程;(2)求与圆和直线都相切的最小圆的方程.19.(12分)如图,三棱锥中,,,,,,点是PA的中点,点D是AC的中点,点N在PB上,且.(1)证明:平面CMN;(2)求平面MNC与平面ABC所成角的余弦值.20.(12分)已知等差数列满足:,.(1)求数列的通项公式;(2)若数列满足:,,求数列的通项公式.21.(12分)如图,在三棱柱中,侧棱垂直于底面,分别是的中点(1)求证:平面平面;(2)求证:平面;(3)求三棱锥体积22.(10分)已知,,其中(1)已知,若为真,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据三角函数、等比数列、双曲线和导数知识逐项分析即可求解.【详解】①在中,则有,因,所以,又余弦函数在上单调递减,所以,故①正确,②当且时,此时,但是,,不成等比数列,故②错误,③由双曲线可得双曲线的渐近线为,故③错误,④“”是“是函数的极值点”的必要不充分条件,故④错误.故选:B.2、B【解析】求出两圆的圆心与半径,根据两圆的位置关系的判定即可求解.【详解】已知圆的圆心到直线的距离,即,解得或,因为,所以,圆的圆心的坐标为,半径,将圆化为标准方程为,其圆心的坐标为,半径,圆心距,两圆内切,故选:B3、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.4、C【解析】假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.5、A【解析】由绝对值的意义可知命题p为真命题;由于,所以命题q为假命题;因此为假命题,为真命题,“且”字联结的命题只有当两命题都真时才是真命题,所以答案选A6、D【解析】由椭圆的对称性可知,,代入计算可得答案.【详解】设椭圆左焦点为,连接由椭圆的对称性可知,,所以.故选:D.7、C【解析】由统计数据求样本中心,根据样本中心在回归直线上求得,即可得回归方程,进而估计时的y值即可.【详解】由题意:,,则,可得,故,当时,.故选:C8、B【解析】先求出甲第一轮胜出的概率,再求出甲第二轮胜出的概率,即可得出结果.【详解】甲最终获得冠军的概率,故选:B.9、B【解析】取的中点,得出平面,作,在直角中,求得,以为原点,为轴,为轴建立平面直角坐标系,求得点的轨迹方程,即可求解.【详解】如图所示,取的中点,连接,得到平行于平面且过点的平面,如图(1)(2)所示,作,则P1与E重合,则,在直角中,可得,在图(3)中,设直三棱柱的所有棱长均为,且,以为原点,为轴,为轴建立平面直角坐标系,则,所以,即所以,整理得,所以点P的轨迹是椭圆的一部分.故选:B.10、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A11、A【解析】根据双曲线的几何意义即可得到结果.【详解】因为双曲线的实轴长为2a,而双曲线中,,所以其实轴长为故选:A12、B【解析】利用充分条件、必要条件的定义可得出结论.【详解】,因此,“”是“”必要不充分条件.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用复数除法化简,由共轭复数的概念写出即可.【详解】,∴.故答案为:14、①.②..【解析】结合递推公式计算出,即可求出的值;证得数列是以3为首项,2为公比的等比数列,即可求出结果.【详解】因为,所以,,,因此,由于,又,即,所以,因此数列是以3为首项,2为公比的等比数列,则,即,故答案为:;.15、##【解析】由题意可得,从而可求出的值【详解】因为直线与直线相互平行,所以,解得,故答案为:16、①.②.【解析】根据题意,结合条件概率的计算公式,即可求解.【详解】根据题意,事件表示“第3次取单恰好是从1号店取单”,因此;同理故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)求出圆的圆心与半径,分过点的直线的斜率不存和存在两种情况,利用圆心到直线距离等于半径,即可求出切线方程;(2)根据圆心与弦中点的连线垂直线,可求出直线的斜率,进而求出结果.【小问1详解】解:由题意知圆心的坐标为,半径,当过点的直线的斜率不存在时,方程为由圆心到直线的距离知,此时,直线与圆相切当过点的直线的斜率存在时,设方程为,即.由题意知,解得,∴方程为故过点的圆的切线方程为或【小问2详解】解:∵圆心,,即,又,∴,则.18、(1)或;(2).【解析】(1)根据题意设出直线的方程,然后根据直线与圆相切,即可求出答案;(2)首先根据题意判断出最小圆的圆心在直线上,且最小圆的半径为,然后设出最小圆的圆心为,则圆心到直线的距离为,从而可求出答案.【小问1详解】因为直线不过原点,设直线的方程为,圆的标准方程为,若直线与圆相切,则,即,解得或者3,所以直线的方程为或者;【小问2详解】因为,所以直线与圆相离,所以所求最小圆的圆心一定在圆的圆心到直线的垂线段上,即最小圆的圆心在直线上,且最小圆的半径为,设最小圆的圆心为,则圆心到直线的距离为,所以,即,解得(舍)或,所以最小的圆的方程为.19、(1)证明见解析(2)【解析】建立如图所示空间直角坐标系,得到相关点和相关向量的坐标,(1)求出平面的法向量,利用证明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夹角公式即可求解.【小问1详解】证明:三棱锥中,,,∴分别以,,,,轴建立如图所示空间直角坐标系∵,,点M是PA的中点,点D是AC的中点,点N在PB上且∴,,,,,设平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小问2详解】,,∴平面∴为平面的法向量则与的夹角的补角是平面与平面所成二面角的平面角.∴平面与平面所成角的余弦值为.20、(1);(2).【解析】(1)由题设条件,结合等差数列通项公式求基本量d,进而写出通项公式.(2)由(1)得,应用累加法、错位相减法及等比数列前n项和公式求的通项公式.【小问1详解】令公差为d,由得:,解得.所以.【小问2详解】,则,累加整理,得:,①,②②-①得:,又满足上式,故.21、(1)证明见解析;(2)证明见解析;(3)【解析】(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.(1)在三棱柱中,底面ABC,所以AB,又因为AB⊥BC,所以AB⊥平面,因为AB平面,所以平面平面.(2)取AB中点G,连结EG,FG,因为E,F分别是、的中点,所以FG∥AC,且FG=AC,因为AC∥,且AC=,所以FG∥,且FG=,所以四边形为平行四边形,所以EG,又因为EG平面ABE,平面ABE,所以平面.(3)因为=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱锥的体积为:==.考点:本小题主要考查直线与直线、直线与平面、平面与平面的垂直与平行的证明;考查几何体的体积的求解等基础知识,考查同学们的空间想象能力、推理论证能力、运算求解能力、逻辑推理能力,考查数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省邯郸市临漳县2026届九年级上学期1月期末考试道德与法治试卷(无答案)
- 中学食堂卫生管理制度
- 养老院兴趣小组制度
- 养老院服务质量评估制度
- 企业人力资源规划与发展制度
- 老年终末期尿失禁皮肤护理的循证多模式干预方案
- 家用电器安全用电知识普及手册
- 工业危险废物处理工操作水平测试考核试卷含答案
- 我国上市公司现金持有量影响因素剖析:理论、实证与策略
- 我国上市公司并购事件信息传播与市场反应的联动效应研究:基于多案例与实证分析
- 四年级数学除法三位数除以两位数100道题 整除 带答案
- 装修公司施工进度管控流程详解
- 村委会 工作总结
- 2025国家电网考试历年真题库附参考答案
- (正式版)DB33∕T 2059-2025 《城市公共交通服务评价指标》
- 2024-2025学年江苏省南京市玄武区八年级上学期期末语文试题及答案
- 连锁餐饮门店运营管理标准流程
- GB/T 755-2025旋转电机定额与性能
- 钢结构防护棚工程施工方案
- 2025低空经济发展及关键技术概况报告
- 中国药物性肝损伤诊治指南(2024年版)解读
评论
0/150
提交评论