版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西省抚州市临川实验学校高二上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1 B.-=1C.-=1 D.-=12.平面与平面平行的充分条件可以是()A.平面内有一条直线与平面平行B.平面内有两条直线分别与平面平行C.平面内有无数条直线分别与平面平行D平面内有两条相交直线分别与平面平行3.△ABC两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.4.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.5.若正整数N除以正整数m后的余数为n,则记为,如.如图所示的程序框图的算法源于我国古代闻名中外的“中国剩余定理”.执行该程序框图,则输出的i等于()A.7 B.10C.13 D.166.若实数,满足约束条件,则的最小值为()A.-3 B.-2C. D.17.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直,若点C到平面AB1D1的距离为,则直线与平面所成角的余弦值为()A. B.C. D.8.已知是公差为3的等差数列.若,,成等比数列,则的前10项和()A.165 B.138C.60 D.309.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.10.若用面积为48的矩形ABCD截某圆锥得到一个椭圆,且该椭圆与矩形ABCD的四边都相切.设椭圆的方程为,则下列满足题意的方程为()A. B.C. D.11.设集合,集合,当有且仅有一个元素时,则r的取值范围为()A.或 B.或C.或 D.或12.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知命题:,总有.则为______14.已知函数.(1)当时,求曲线在点处的切线方程;(2)求的单调区间;15.已知数列的前项和为,则__________.16.已知直线,抛物线上一动点到直线l的距离为d,则的最小值是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,四边形为正方形,已知平面,且,E为中点(1)证明:平面;(2)证明:平面平面18.(12分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.19.(12分)圆的圆心为,且与直线相切,求:(1)求圆的方程;(2)过的直线与圆交于,两点,如果,求直线的方程20.(12分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.21.(12分)新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考物理的情况,随机选取了100名高一学生,将他们某次物理测试成绩(满分100分)按照,,,,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计这100名学生本次物理测试成绩的中位数.(2)根据调查,本次物理测试成绩不低于60分的学生,高考将选考物理科目;成绩低于60分的学生,高考将不选考物理科目.按分层抽样的方法从测试成绩在,的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考物理科目的概率.22.(10分)已知抛物线上任意一点到焦点F最短距离为2,(1)求抛物线C的方程;(2)过焦点F的直线,互相垂直,且与C分别交于A,B,M,N四点,求四边形AMBN面积的最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意得,双曲线的焦距为,即,又双曲线的渐近线方程为,点在的渐近线上,所以,联立方程组可得,所以双曲线的方程为考点:双曲线的标准方程及简单的几何性质2、D【解析】根据平面与平面平行的判定定理可判断.【详解】对A,若平面内有一条直线与平面平行,则平面与平面可能平行或相交,故A错误;对B,若平面内有两条直线分别与平面平行,若这两条直线平行,则平面与平面可能平行或相交,故B错误;对C,若平面内有无数条直线分别与平面平行,若这无数条直线互相平行,则平面与平面可能平行或相交,故C错误;对D,若平面内有两条相交直线分别与平面平行,则根据平面与平面平行的判定定理可得平面与平面平行,故D正确.故选:D.3、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.4、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B5、C【解析】根据“中国剩余定理”,进而依次执行循环体,最后求得答案.【详解】由题意,第一步:,余数不为1;第二步:,余数不为1;第三步:,余数为1,执行第二个判断框,余数不为2;第四步:,执行第一个判断框,余数为1,执行第二个判断框,余数为2.输出的i值为13.故选:C.6、B【解析】先画出可行域,由,作出直线向下平移过点A时,取得最小值,然后求出点A的坐标,代入目标函数中可求得答案【详解】由题可得其可行域为如图,l:,当经过点A时,取到最小值,由,得,即,所以的最小值为故选:B7、A【解析】先由等面积法求得的长,再以为坐标原点,建立如图所示的空间直角坐标系,运用线面角的向量求解方法可得答案【详解】如图,连接交于点,过点作于,则平面,则,设,则,则根据三角形面积得,代入解得以为坐标原点,建立如图所示的空间直角坐标系则,,设平面的法向量为,,,则,即,令,得,所以直线与平面所成的角的余弦值为,故选:8、A【解析】由等差数列的定义与等比数列的性质求得首项,然后由等差数列的前项和公式计算【详解】因为,,成等比数列,所以,所以,解得,所以故选:A9、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A10、A【解析】由椭圆与矩形ABCD的四边都相切得到再逐项判断即可.【详解】由于椭圆与矩形ABCD的四边都相切,所以矩形两边长分别为,由矩形面积为48,得,对于选项B,D由于,不符合条件,不正确.对于选项A,,满足题意.对于选项C,不正确.故选:A.11、B【解析】由已知得集合M表示以点圆心,以2半径左半圆,与y轴的交点为,集合N表示以点为圆心,以r为半径的圆,当圆C与圆O相外切于点P,有且仅有一个元素时,圆C过点M时,有且有两个元素,当圆C过点N,有且仅有一个元素,由此可求得r的取值范围.【详解】解:由得,所以集合M表示以点圆心,以2半径的左半圆,与y轴的交点为,集合表示以点为圆心,以r为半径的圆,如下图所示,当圆C与圆O相外切于点P时,有且仅有一个元素时,此时,当圆C过点M时,有两个元素,此时,所以,当圆C过点N时,有且仅有一个元素,此时,所以,所以当有且仅有一个元素时,则r的取值范围为或,故选:B.12、D【解析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【详解】.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、,使得【解析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题,总有,所以的否定为:,使得故答案为,使得【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.14、(1)(2)详见解析【解析】(1)分别求得和,从而得到切线方程;(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负得到函数的单调区间.【详解】(1),,,,又,在处的切线方程为.(2),令,解得:,.①当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;②当时,在上恒成立,的单调递增区间为,无单调递减区间;③当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;综上所述:当时,的单调递增区间为,;单调递减区间为;当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,;单调递减区间为.【点睛】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨论含参数函数的单调区间的问题,属于常考题型.15、【解析】根据题意求得,得到,利用等差数列的求和公式,求得,结合裂项法求和法,即可求解.【详解】由,可得,即,因为,所以,又因为,所以,可得,所以,所以.故答案为:.16、##【解析】作直线l,抛物线准线且交y轴于A点,根据抛物线定义有,进而判断目标式最小时的位置关系,结合点线距离公式求最小值.【详解】如下图示:若直线l,抛物线准线且交y轴于A点,则,,由抛物线定义知:,则,所以,要使目标式最小,即最小,当共线时,又,此时.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)设与交于点,连结,易证,再利用线面平行的判断定理即可证得答案;(2)利用线面垂直的判定定理可得平面,再由面面垂直的判断定理即可.【小问1详解】连接交于,连接因为底面是正方形,所以为中点,因为在中,是的中点,所以,因为平面平面,所以平面【小问2详解】侧棱底面底面,所以,因为底面是正方形,所以,因为与为平面内两条相交直线,所以平面,因为平面,所以平面平面.18、(1)14海里小时;(2).【解析】(1)由题意知,,,.在△中,利用余弦定理求出,进而求出渔船甲的速度.(2)在△中,,,,,由正弦定理,即可解出的值.【小问1详解】(1)依题意,,,,.在△中,由余弦定理,得.解得.故渔船甲的速度为海里小时.即渔船甲的速度为14海里小时.【小问2详解】在△中,因为,,,,由正弦定理,得,即.值为.19、(1)(2)或【解析】由点到直线的距离公式求得圆的半径,则圆的方程可求;当直线的斜率不存在时,求得弦长为,满足题意;当直线的斜率不存在时,设出直线方程,求出圆心到直线的距离,再由垂径定理列式求,则直线方程可求【小问1详解】由题意得:圆的半径为,则圆的方程为;【小问2详解】当直线的斜率不存在时,直线方程为,得,符合题意;当直线的斜率存在时,设直线方程为,即圆心到直线的距离,则,解得直线的方程为直线的方程为或20、(1),600(2)【解析】用平均数及方差公式计算即可.用平均值得、之间的关系,再由,解不等式可得解.【小问1详解】甲类品牌汽车的排放量的平均值,甲类品牌汽车的排放量的方差.【小问2详解】由题意知乙类品牌汽车的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的排放量的方差,因为乙类品牌汽车比甲类品牌汽车的排放量稳定性好,所以,解得.21、(1),中位数为;(2).【解析】(1)由频率和为1求参数a,根据直方图及中位数性质求中位数即可.(2)首先由分层抽样原则求选取的5人在、的人数分布情况,再应用列举法求古典概型的概率即可.【小问1详解】由图知:,解得.学生成绩在的频率为;学生成绩在的频率为.设这100名学生本次物理测试成绩的中位数为,则,解得,故估计这100名学生本次物理测试成绩的中位数为.【小问2详解】由(1)知,学生成绩在的频数为,学生成绩在的频数为.按分层抽样的方法从中选取5人,则成绩在的学生被抽取人,分别记为,,成绩在的学生被抽取人,分别记为,,.从中任意选取2人,有,,,,,,,,,这10种选法,其中至少有1人高考选考物理科目的选法有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省十堰市2026年高三年级元月调研考试生物学试题(含答案)
- 养老院入住老人心理关怀制度
- 人力资源部门工作职责与权限制度
- 企业内部保密工作规划制度
- 老年终末期疼痛评估的非药物方案
- 荨麻疹健康宣教总结2026
- 加快信息技术与工业融合推进方案
- 第05章集团规章制度.8.众义达集团信息系统管理细则
- 临汾尧都法院书记员招聘考试真题库2025
- 燃气轮机运行值班员风险评估与管理模拟考核试卷含答案
- 公路成本管理培训
- 2026云南昆明市公共交通有限责任公司总部职能部门员工遴选48人笔试模拟试题及答案解析
- 2025至2030中国数字经济产业发展现状及未来趋势分析报告
- 上海市松江区2025-2026学年八年级(上)期末化学试卷(含答案)
- GJB3243A-2021电子元器件表面安装要求
- 学堂在线 雨课堂 学堂云 工程伦理 章节测试答案
- 白血病医学知识培训
- 护理敏感质量指标实用手册解读
- 圆柱弹簧通用作业指导书
- 热力学统计物理第三章
- 家庭装修简易合同范本模板六篇
评论
0/150
提交评论