版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公务员考试数量关系专题练习
第一部分单选题(150题)
1、2,3,7,22,155,()
A、2901
B、3151
C、3281
D、3411
【答案】:答案:D
解析:7=3X2+1,22=7X3+1,155=22X7+1,即所填数字为
22X155+l=3411o故选D。
2、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,
8等差,所以后项为4/10=2/5。故选C。
3、某年的10月里有5个星期六,4个星期日,则这年的10月1日
是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31
日是星期六。31=4X7+3,所以10月3日也是星期六,故10月1日是
星期四。故选I)。
4、三位评委为12名选手投票,每位评委分别都投出了7票,并且每
位选手都有评委投票。得三票的选手直接晋级,得两票的选手待定,
得一票或无票的直接淘汰,则下列说法正确的是()。
A、晋级和待定的选手共6人
B、待定和淘汰的选手共7人
C、晋级的选手最多有5人
D、晋级比淘汰的选手少3人
【答案】:答案:D
解析:每位评委投了7票,那么这三位评委的选择各包含了7位选手,
画出如下文氏图。黑色部分代表三位评委都投票的选手,即晋级选手,
记为A。阴影部分代表有两位评委投票的选手,即待定选手,记为B。
白色部分代表至多有一位评委投票的选手,即淘汰选手,记为C。D项
正确,由容斥原理可知,A+B+C=12,(7+7+7)—B—2A=12,得到
B+2A=9,C-A=3,即晋级选手比淘汰选手少3人。方法二:设晋级、
待定、淘汰的数量分别为a、b、c,则a+b+c=12,3a+2b+c=
3X7=21,得2a+b=9。A项错误,当a+b=6时,&=-1不成立。B
项错误,b+c=7,则a=12-7=5,b=5—2X3=T不可能;C项错
误,a=5时,b=-l不可能;D项正确,c—a=3时,得2a+b=9成
立。故选Do
5、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去
B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客
有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,
有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。
那么,50位游客中有多少位恰好去了两个景点?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+
32+27—y—2X8=50—1,解得y=29。故选A。
6、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8X2-6=10;10X2-6=14;14X2-10=18;18X2-10=26o故选C。
7、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:该数列是以3为公比的等比数列,故空缺项为:54X3=162。故
选B。
8、2,14,84,420,1680,()
A、2400
B、3360
C、4210
D、5040
【答案】:答案:D
解析:两两做商得到7,6,5,4,按此规律下一项为3,所以所求项
为1680X3=5040o故选D。
9、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线
行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平
均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速
10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知
项应为622o故选Do
12、某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将
水位由警戒水位降至安全水位;只打开6个泄洪闸时,这个过程为24
个小时,如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需
要多少小时可将水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:设水库每小时的入库量为x。根据题意可列方程(10-x)8=(6-
x)24,解得x=4,故水库警戒水位至安全水位的容量为(10-4)X8=48;
设打开8个泄洪闸需t小时可将水位降至安全水位;则48=(8-4)t,解
得812。故选B。
13、0,6,24,60,()
A、70
B、80
C、100
D、120
【答案】:答案:D
解析:0=0X1X2,6=1X2X3,24=2X3X4,60=3X4X5,
()=4X5X6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,
()=53-5=120。故选D。
14、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2X7,294=14X21,为两项相加、相乘交替
得到后一项,即所填数字为21+294=315。故选D。
15、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只
好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一
倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度龙2,步行速度为1,设步行时间为t分钟,由题意
可知,50X2=2(50+10-t)+lt,得t=20,即步行了20分钟。故选A。
16、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:两两分组得到(41,59),(32,68),(72,()),发现组内
做和均为100o故选A。
17、某饮料店有纯果汁(即浓度为100%)10千克,浓度为3096的浓缩还
原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯
净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。
()
A、40%
B、37.5%
C、35%
I)、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100给10千克,纯净
水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为
10+10+20=40(千克),最终溶质为10+20义30炉16(千克)。则最终果汁
浓度=16+40X100%=40%。故选A。
18、226,264,316,388,()
A、236
B、386
C、486
D、566
【答案】:答案:C
解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,
388=324+64=182+43,由此可以推知下一项应为192+53=486。故选C。
19、钟表有一个时针和一个分针,分针每一小时转360度,时针每12
小时转360度,则24小时内时针和分针成直角共多少次:
A.28
B.36
C.44
D.48
【答案】:答案:C
解析:一般情况,1小时内会出现2次垂直情况,但是3点、9点、15
点、21点这4个特殊时间,只有1次垂直,所以有。故正确答案为Co
20、-13,19,58,106,165,()
A、189
B、198
C、232
D、237
【答案】:答案:D
解析:二级等差。(即作差2次后,所得相同)。故选D。
21、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%
的食盐水900克,问5%的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900—x)克;根
据混合后浓度为15%,得[xX5%+(900—x)X20姐=900X15%,解得x
=300(克)。故选C。
22、3,30,129,348,()
A、532
B、621
C、656
D、735
【答案】:答案:D
解析:3=13+2.30=33+3、129=53+4、348=73+5,其中底数1、3、5、7
构成连续的奇数列,另一部分2、3、4、5是连续的自然数,即所填数
字为93+6=735。故选D。
23、有一支参加阅兵的队伍正在进行训练,这支队伍的人数是5的倍
数且不少于1000人,如果按每横排4人编队,最后少3人,如果按每
横排3人编队,最后少2人;如果按每横排2人编队,最后少1人。
请问,这支队伍最少有多少人?()
A、1045
B、1125
C、1235
D、1345
【答案】:答案:A
解析:问最少,由小到大代入选项:代入A选项,(1045+3)能被4整
除;(1045+2)能被3整除;(1045+1)能被2整除,满足题意。故选A。
24、3,30,129,348,()
A、532
B、621
C、656
D、735
【答案】:答案:D
解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底数1、3、5、7
构成连续的奇数列,另一部分2、3、4、5是连续的自然数,即所填数
字为93+6=735。故选D。
25、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是
一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故
选C
26、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,
12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为
42+21+54+148=239o故选A。
27、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3
的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,
10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知
项应为622o故选D。
28、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)义4=24,(24-8)义4=64,(64-
24)X4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,
128,小数点之后的数超过三位取后两位,所以未知项是160.28。政选
Ao
29、某实验室模拟酸雨,现有浓度为30%和10%的两种盐酸溶液,实验
需要将二者混合配置出浓度为16%的盐酸700克备用,那么30%的盐酸
需要多少克?()
A、180
B、190
C、200
D、210
【答案】:答案:D
解析:设需要30%的盐酸溶液x克,由二者混合后的盐酸700克可知,
需要10%的盐酸(700-x)克。则30%x+10%X(700-x)=16%X700,解得
x=210o故选D。
30、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只
好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一
倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度%2,步行速度为1,设步行时间为t分钟,由题意
可知,50X2=2(50+10-t)+lt,得t=20,即步行了20分钟。故选A。
31、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖
出总进货量的60%,中午以上午售出价的8折卖出总进货量的2096,下
午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该
商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午
以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总
收入=8X6+6.4X2+3.2X1=64元,总利润=64-5义10=14元,实际购入
(210/14)X10=150斤。故选B。
32、小王登山,上山的速度是4km/h,到达山顶后原路返回,速度为
6km/h,设山路长为9km,小王的平均速度为()km/ho
A、5
B、4.8
C、4.6
D、4.4
【答案】:答案:B
解析:平均速度为总路程除以总时间,即
(2X9)4-(94-4+94-6)=4.8km/ho故选B。
33、某单位组织工会活动,30名员工自愿参加做游戏。游戏规则:按
广30号编号并报数,第一次报数后,单号全部站出来,然后每次余下
的人中第一个开始站出来,隔一人站出来一个人。最后站出来的人给
大家唱首歌。那么给大家唱歌的员工编号是()o
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次报数后,单号全部站出来,剩余号码为2、4、6、8、
10.....................30,均为2的倍数;每次余下的人中第一个开始站出
来,隔一人站出来一个人,剩余号码为4、8、12、16、20、24、28,
均为4的倍数;再从余下的号码中第一个人开始站出来,隔一个人站
出来一个人,剩余号码为8、16、24,均为8的倍数;重复上一次的步
骤,剩余16号,为16的倍数。1—30中16的倍数只有16。故选B。
34、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,
仍为18点整。由“1990+12=165余10”可知,此时时钟表示的时间
应是16点整。故选A。
35、4,12,8,10,()
A、6
B、8
C、9
I)、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1
等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9o故选C。
36、4,10,34,130,()
A、184
B、258
C、514
D、1026
【答案】:答案:C
解析:解法一:二级等差数列变式。解法二:从第三项开始,第三项
等于第二项的5倍减去第一项的4倍,即34=5X10-4X4,130=5X34-
4X10,(514)=5X130-4X34。故选C。
37、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一
个应为18,原数列下一项为18+72=90。故选C。
38、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56—25=—3X[25—(—2)],25—(—2)=—3X(—2—7),
—2—7=—3义(7—4),第(N—1)项一第N项=-3[第N项一第(N—1)
项](N22),即所填数字为4—=5。故选D。
39、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各项减2后光质数列,故下一项为17+2=19。故选B。
40、甲、乙两人在一条400米的环形跑道二从相距200米的位置出发,
同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速
度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于
是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400
米,甲一共比乙多跑200+400X2=1000(米),乙跑了2000米,甲跑了
3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的
3000+2000=1.5倍。故选B。
41、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,
5等差。故选C。
42、假设地球上新生成的资源的增长速度是一定的,照此推算,地球
上的资源可供110亿人生活90年,或者可供90亿人生活210年。为
了使人类能够不断繁衍,那么地球最多能养活多少亿人?()
A、70
B、75
C、80
D、100
【答案】:答案:B
解析:设地球的原始资源可供x亿人生存一年,每年增长的资源可供y
亿人生存一年,即x+90y=90X110,x+210y=210X90,两式联立得
y=75,为了使人类能够不断繁衍,那么地球最多能养活75亿人。故
选B。
43、5,4,10,8,15,16,(),()
A、20,18
B、18,32
C、20,32
D、18,36
【答案】:答案:C
解析:从题干中给出的数字不难看出,奇数项5,10,15,(20)构成公
差为5的等差数列,偶数项4,8,16,(32)构成公比为2的等比数歹k
故选C。
44、把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需
要多少分钟?()
A、32分钟
B、38分钟
C、40分钟
D、152分钟
【答案】:答案:B
解析:把一根钢管锯成5段需要锯4次,所以每锯一次需要8+4=2(分
钟)。则锯20段需要锯19次,所需的时间为19X2=38(分钟)。故选B。
45、1,10,26,75,196,()
A、380
B、425
C、520
D、612
【答案】:答案:C
解析:第一步相差,得到9,16,49,121,明显是平方,分别是3,4,7,
11的平方,发现都是第一项+第二项二第三项,所以下一个差值是(7+11)
的平方,也就是18的平方,而下个数就应该是196+18的平方等于520。
故选C。
46、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次将相邻函个数中后一个数减去前一个数得5,6,7,5,6,
为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选
Do
47、3,2,2,5,17,()
A、24
B、36
C、44
D、56
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得一1,0,3,12,
再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9X3
+12+17=56。故选D。
48、商店购入一百多件A款服装,其单件进价为整数元,总进价为1
万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服
装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定
价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A
款服装?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服装有125件,进价为80元,B款服装进价为
80义075=60(元),B款服装定价为60X1.6=96(元),利润为96-
60=36(元),A款服装利润为36X2=72(元),所以A款服装售价为
80+72=152(元)。销售数量至少为2500+152=16.4,取整为17件。故
选C。
49、2012年3月份的最后一天是星期六,贝12013年3月份的最后一天
是()。
A、星期天
B、星期四
C、星期五
D、星期六
【答案】:答案:A
解析:从2012年3月31号到2013年3月31号,一共是365天,
365+7=52周…1天,所以星期六加一天即为星期天。故选A。
50、12,23,35,47,511,()
A、613
B、612
C、611
I)、610
【答案】:答案:A
解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数
列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知
项为613o故选A。
51、某种茶叶原价30元一包,为了促销,降低了价格,销量增加了二
倍,收入增加了五分之三,则一包茶叶降价()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:设原来茶叶的销量为1,那么现在销量为3o原来收入为30元,
现在收入为30X(1+3/5)=48元,每包茶叶为48+3=16元,降价30
—16=14元。故选Bo
52、4,5,9,18,34,()
A、59
B、37
C、46
D、48
【答案】:答案:A
解析:该数列的后项减去前项得到一个平方数列,故空缺处应为34+25
=59。故选Ao
53、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,
为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。
故选B。
54、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原数列可以写成1X2,3X4,5X8,7X16,前一个乘数数列为
1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,
16,是等比数列,下一项是32,所以原数列空缺项为9X32=288。故
选Co
55、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果
把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原
来的五位数是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位数问题考虑用代入排除法解题。代入A选项,180=44X4+4,
但44180W18044X2+11122,不符合题意,排除;代入B选项,
240=59X4+4,59240=24059X2+11122,符合题意,正确。故选B。
56、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还
原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯
净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。
()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净
水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为
10+10+20=40(千克),最终溶质为)0+20X30放16(千克)。则最终果汁
浓度=16+40X100%=40%。故选A。
57、将所有由1、2、3、4组成且没有重复数字的四位数,按从小到大
的顺序排列,则排在第12位的四位数是()。
A、3124
B、2341
C、2431
D、3142
【答案】:答案:C
解析:当千位数字是1时有二6种四位数,当千位数字是2时也有二6种
四位数,因此排在第12位的就是千位数字为2的最大四位数,即2431。
故选C。
58、修一条公路,甲工程队单独做需要40天,乙工程队单独做需要24
天。现在两队合作,同时从两端开工,在距中点750米处两队相遇。
那么这条公路长多少米?()
A、3750
B、3000
C、4000
D、6000
【答案】:答案:D
解析:甲乙效率之比=24:40=3:5,完成的任务量之比3:5、相差2
份对应对应750X2=1500米,总任务量8份对应1500X4=6000米。故
选D。
59、3,2,2,5,17,()
A、24
B、36
C、44
D、56
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得一1,0,3,12,
再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9X3
+12+17=56。故选D。
60、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次
进位,像这样的三位数总共有多少个?()
A、48
B、126
C、174
I)、180
【答案】:答案:C
解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的
数是0、2、4、6、80又因为与这个三位数相加有且只有一次进位,所
以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,
这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,
十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种
情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有
174(48+126=174)个,即:像这样的三位数总共有174个。故选C。
61、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,
去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游
客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,
有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。
那么,50位游客中有多少位恰好去了两个景点?()
A、29
B、31
C、35
I)、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+
32+27-y-2X8=50-l,解得y=29。故选A。
62、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2X3=6,3X6=18,6X18=108,……前两项相乘等于下一项,
则所求项为18X108,尾数为4。故选A。
63、1,2,4,3,5,6,9,18,()
A、14
B、24
C、27
D、36
【答案】:答案:A
解析:位于奇数项的1、4、5、9构成和数列,位于偶数项的2、3、6、
18构成积数列,即所填的奇数项应为5+9=14。故选A。
64、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数
项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项
为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。
65、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲
晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,
则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,
丙才出发,则丙追上甲所需时间是()。
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、丙三辆汽车的速度分别为x、y、zo由于甲行驶30
分钟的路程,乙需要2小时才能追上,则30x=(y—x)X2X60,化简
得x:y=4:5。又因乙行驶20分钟的路程,丙需要5小时才能追上,
贝U20y=(z—y)X5X60,化简得y:z=15:16。所以三辆汽车的速度
x:y:z=12:15:16o赋值甲、乙、丙的速度分别为12、15、16,甲
出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已
经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程
12X50=(16-12)Xt,解得t=150。故选B。
66、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多
少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把
大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2
与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆
分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使
加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不
如将它换成2个3。因为2X2X2=8,而3X3=9。故拆分出的自然数中,
至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,
其乘积最大,最大值为243X2=486。故选瓦
67、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自
的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方
数?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和
为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。
100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中
1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,
现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个
平方数为偶数的是100,需要再过(100-64)-2二18年。故选B。
68、12,27,72,(),612
A、108
B、188
C、207
D、256
【答案】:答案:C
解析:(第一项-3)义3二第二项,(72-3)X3=(207),(207-3)X3=612。
故选C。
69、2,4,12,32,88,()
A、140
B、180
C、220
I)、240
【答案】:答案:D
解析:12=2X(2+4),32=2X(4+12),88=2X(32+12),第三项
=2X(第一项+第二项),即所填数字为2义(88+32)=240。故选D。
70、水面上有三艘反向行驶的轮船,其中甲船的时速为63公里,乙、
丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后
必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、
丙两船最多相距多少公里?()
A、5
B、7
C、9
[)、11
【答案】:答案:B
解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶
56分钟,行驶路程为56公里。故最多相距7公里。故选B。
71、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么
共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木
材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有
15+21+28+36=100根木材。故选B。
72、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自
的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方
数?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和
为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。
100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中
1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,
现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个
平方数为偶数的是100,需要再过(100-64)!2=18年。故选B。
73、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到
大的质数和,所以下一个是31+37=68。故选C。
74、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,
这些台历的日期数加起来恰好是77,请问这一天是几号?()
A、14
B、15
C、16
D、17
【答案】:答案:B
解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等
差数列求和公式,可知中位数=77+7=11,7天中位数是第4天即第4
天为11号。第七天是11+(7-4)X1=14号,可知今天是15号。故选Bo
75、接受采访的100个大学生中,88人有手机,76人有电脑,其二有
手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少
人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的
人数为88—15=73人,则有电脑但没手机(②部分)的人数为76—73=
3人。故选D。
76、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的
等差数列,所以下一项为78-2=76。故选C。
77、6,21,43,72,()
A、84
B、96
C、108
D、112
【答案】:答案:C
解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构
成公差为7的等差数列,即所填数字为72+29+7=108。故选C。
78、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次
进位,像这样的三位数总共有多少个?()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的
数是0、2、4、6、80又因为与这个三位数相加有且只有一次进位,所
以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,
这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,
十位可以是0、1、2、3、4、5、6七个数,百位是一9九个数,这种
情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有
174(48+126=174)个,即:像这样的三位数总共有174个。故选C。
79、过长方体一侧面的两条对角线交点,与下底面四个顶点连得一四
棱锥,则四棱锥与长方体的体积比为多少?()
A、1:8
B、1:6
C、1:4
D、1:3
【答案】:答案:B
解析:等底等高时,椎体体积是柱体体积的,而题中椎体的高是长方
体高的一半,四棱锥与长方体的体积之比为1:6。故选B。
80、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只
好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一
倍,则步行了多少分钟?()
A、20
B、34
C、40
I)、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意
可知,50X2=2(50+10-t)+lt,得t=20,即步行了20分钟。故选A。
81、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最
后一排都只有2人.这个学校二年级有()名学生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只
有B项满足条件。
82、团体操表演中,编号为广100的学生按顺序排成一列纵队,编号
为1的学生拿着红、黄、蓝三种颜色的旗帜,以后每隔2个学生有1
人拿红旗,每隔3个学生有1人拿蓝旗,每隔6个学生有1人拿黄旗。
问所有学生中有多少人拿两种颜色以上的旗帜?()
A、13
B、14
C、15
D、16
【答案】:答案:B
解析:每隔n个人意为每(n+1)个人,则拿红、蓝、黄旗的周期分别为
3、4、7。除编号为1的学生外还剩99人,同时拿红、蓝旗的编号为
12(3和4的公倍数)的倍数,994-12=8.25,有8人;同理,同时拿红、
黄旗的编号为21(3和7的公倍数)的倍数,99^-21=4.7,有4人;同时
拿蓝、黄旗的编号光28(4和7的公倍数)的倍数,99+28=3.5,有3
人;同时拿红蓝黄旗的编号为84(3、4和7的公倍数)的倍数,
994-84=1.1,有1人。拿两种颜色以上的旗帜共有8+4+3+1-
2义1二14(人)。故选B。
83、某商店花10000元进了一批商品,按期望获得相当于进价25%的利
润来定价。结果只销售了商品总量的30%。为尽快完成资金周转,商店
决定打折销售,这样卖完全部商品后,亏本1000元。问商店是按定价
打几折销售的?()
A、九折
B、七五折
C、六折
D、四八折
【答案】:答案:C
解析:由只销售了总量的30%知,打折前销售额为10000X(1+
25%)X30%=3750元;设此商品打x折出售,剩余商品打折后,销售额
为10000X(1+25%)X(l—30%)x=8750x。根据亏本1000元,可得
3750+8750x-10000=-1000,解得x=0.6,即打六折。故选+
84、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)XI,10=(4+1)X2,33=(10+1)X3,136=(33+
1)X4,an=(an-1+1)X(n-1)(n>2),即所填数字应为(136+
1)X5=685。故选A。
85、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为T的等差数列;偶数项2、3、4
是连续自然数。故选A。
86、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)X(7+7)=42,(7-3)X(6+4)=40,(8-2)X(3+2)=(30)。故
选Ao
87、某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将
水位由警戒水位降至安全水位;只打开6个泄洪闸时,这个过程为24
个小时,如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需
要多少小时可将水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:设水库每小时的入库量为X。根据题意可列方程(10七)8二(6-
x)24,解得x=4,故水库警戒水位至安全水位的容量为(10-4)义8二48;
设打开8个泄洪闸需t小时可将水位降至安全水位;则48=(8-4)t,解
得t=12。故选B。
88、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10
万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,
扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000
元而成本不变,问该店在租下店面后第几个月内收回投资?()
A、7
B、8
C、9
I)、10
【答案】:答案:A
解析:由题意可得租下店面前3个月成本为1X3+10=13(万元),租下
店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、
公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。
由3+3.2+3.4+3.6=13.2>13,即第7个月收回投资。故选A。
89、1,1,2,6,30,240,()
A、1200
B、1800
C、2400
D、3120
【答案】:答案:D
解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波
那契数列2、3、5、8,即后一项是前面2项的和,8后面是13,240
后面应该是240*13=3120。故选D。
90、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败
过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则
有一队不用比赛直接进人下一轮。问夺冠的球队至少要参加几场比赛?
()
A、3
B、4
C、5
D、6
【答案】:答案:B
解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。
题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的
少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140—70
-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠
军至少需要进行4场比赛。故选B。
91、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得
较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个
钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会
指在相同的分钟位置?
A.24
B.26
C.28
D.30
【答案】:答案:D
解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古
董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已
知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多
走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,
即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重
合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟
的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时
三个分针处于同一个位置。故正确答案为D,
92、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2X7,294=14X21,为两项相加、相乘交替
得到后一项,即所填数字为21+294=315。故选D。
93、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后
来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,
则每千克降低了几分钱?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分时收入才能被价格整除。
(2226=2X3X7X53=42X53)o故选D。
94、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。
95、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,
5等差。故选C。
96、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-
226=9,238-235=3,是公比为的等比数列,即所填数字为238-
3=226+9=235o故选D。
97、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本题为隔项递推数列,存在关系:第三项二第二项-第一项,第
五项二第四项-第三项,……因此未知项为9-6=3。故选C。
98、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原数列各项可作如下拆分:[5[9],[11117],[2325],
[47|33],[95141]。其中前半部分数字作差后构成等比数列,后半部
分作差后构成等差数列。因此未知项为4733。故选B。
99、95,88,71,61,50,()
A、40
B、39
C、38
D、37
【答案】:答案:A
解析:95-9-5=81,88-8-8=72,71-7-1=63,61-6-1=54,50-5-0=45,
40-4-0=36,其中81,72,63,54,45,36等差。故选A。
100、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+10故选C。
10k1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次将相邻两个数中后一个数除以前一个数得1,2,3,4,为
连续自然数列,即所填数字为24X5=120。故选D。
102、某校二年级全部共3个班的学生排队.每排4人,5人或6人,
最后一排都只有2人.这个学校二年级有()名学生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只
有B项满足条件。
103、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每
边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而
且任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,
则共有=400种方案。故选C。
104、甲乙两地相距500公里,在1厘米等于50公里比例尺的地囚上,
两地之间的距离是()厘米。
A、5
B、10
C、15
D、100
【答案】:答案:B
解析:1公分二50公里,500公里=10公分,所求为500X1/50=10厘
米。故选Bo
105、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平
方+1,35=6平方-1,问号=7平方+1,问号二50。故选C。
106、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%
的食盐水900克,问5%的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900—x)克;根
据混合后浓度为15%,#
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年企业社会责任传播策略课
- 2026年人才梯队系统建设方案课程
- 2026甘肃倚核人力资源有限公司招聘备考题库及答案详解(易错题)
- 中药材仓储设施设备运维手册
- 2026重庆万州区长滩镇非全日制公益性岗位工作人员招聘1人备考题库及一套完整答案详解
- 基础化工行业专题:东升西落全球化工竞争格局的重塑
- 宏观经济专题:美联储主席换届交易指南
- 职业噪声工人心血管健康监测技术规范
- 职业压力管理的医疗化服务框架
- 职业健康远程随访的数字化健康干预方案
- 清欠历史旧账协议书
- 临床创新驱动下高效型护理查房模式-Rounds护士查房模式及总结展望
- 乙肝疫苗接种培训
- 2025年江苏省苏州市中考数学模拟试卷(含答案)
- GB/T 45133-2025气体分析混合气体组成的测定基于单点和两点校准的比较法
- 食品代加工业务合同样本(版)
- 北京市行业用水定额汇编(2024年版)
- 安全生产应急平台体系及专业应急救援队伍建设项目可行性研究报告
- 中国传统美食饺子历史起源民俗象征意义介绍课件
- 医疗器械样品检验管理制度
- 中建“大商务”管理实施方案
评论
0/150
提交评论