2026届陕西省铜川市王益区数学高三上期末预测试题含解析_第1页
2026届陕西省铜川市王益区数学高三上期末预测试题含解析_第2页
2026届陕西省铜川市王益区数学高三上期末预测试题含解析_第3页
2026届陕西省铜川市王益区数学高三上期末预测试题含解析_第4页
2026届陕西省铜川市王益区数学高三上期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届陕西省铜川市王益区数学高三上期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数z=,则|z|=()A. B. C. D.2.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切5.设复数满足,则()A.1 B.-1 C. D.6.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.7.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()A.300, B.300, C.60, D.60,8.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.9.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.10.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.11.若直线经过抛物线的焦点,则()A. B. C.2 D.12.设,,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知下列命题:①命题“∃x0∈R,”的否定是“∀x∈R,x2+1<3x”;②已知p,q为两个命题,若“p∨q”为假命题,则“”为真命题;③“a>2”是“a>5”的充分不必要条件;④“若xy=0,则x=0且y=0”的逆否命题为真命题.其中所有真命题的序号是________.14.某公园划船收费标准如表:某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.15.若双曲线的离心率为,则双曲线的渐近线方程为______.16.已知函数,若函数有个不同的零点,则的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求与的回归直线方程;②叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,18.(12分)已知函数.当时,求不等式的解集;,,求a的取值范围.19.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.20.(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.21.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.22.(10分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.2、A【解析】

根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.3、B【解析】

或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.4、D【解析】

由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【点睛】本题主要考查直线与圆的位置关系,属于基础题.5、B【解析】

利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.6、C【解析】

由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.7、B【解析】

由频率分布直方图求出在此路段上汽车行驶速度在区间的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过的频率.【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间的频率为,∴在此路段上汽车行驶速度在区间的车辆数为:,行驶速度超过的频率为:.故选:B.【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.8、D【解析】

设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.9、B【解析】

运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.10、D【解析】

根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.11、B【解析】

计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.12、D【解析】

利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、②【解析】命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”,故①错误;“p∨q”为假命题说明p假q假,则(p)∧(q)为真命题,故②正确;a>5⇒a>2,但a>2⇒/a>5,故“a>2”是“a>5”的必要不充分条件,故③错误;因为“若xy=0,则x=0或y=0”,所以原命题为假命题,故其逆否命题也为假命题,故④错误.14、36010【解析】

列出所有租船的情况,分别计算出租金,由此能求出结果.【详解】当租两人船时,租金为:元,当租四人船时,租金为:元,当租1条四人船6条两人船时,租金为:元,当租2条四人船4条两人船时,租金为:元,当租3条四人船2条两人船时,租金为:元,当租1条六人船5条2人船时,租金为:元,当租2条六人船2条2人船时,租金为:元,当租1条六人船1条四人船3条2人船时,租金为:元,当租1条六人船2条四人船1条2人船时,租金为:元,当租2条六人船1条四人船时,租金为:元,综上,租船最低总费用为360元,租船的总费用共有10种可能.故答案为:360,10.【点睛】本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题.15、【解析】

利用,得到的关系式,然后代入双曲线的渐近线方程即可求解.【详解】因为双曲线的离心率为,所以,即,因为双曲线的渐近线方程为,所以双曲线的渐近线方程为.故答案为:【点睛】本题考查双曲线的几何性质;考查运算求解能力;熟练掌握双曲线的几何性质是求解本题的关键;属于基础题.16、【解析】

作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,,,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,12.5(2)①②20【解析】

(1)运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;(2)①由公式可计算的值,进而可求与的回归直线方程;②求出,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时的值.【详解】解:(1)抽样比为,所以分别是,6,7,8,5所以两数之和所有可能取值是:10,12,13,15,,,所以分布列为期望为(2)因为所以,,;②,设,所以当递增,当递减所以约惠值最大值时的值为20【点睛】本题考查直方图的实际应用,涉及求概率,平均数、拟合直线和导数等问题,关键是要读懂题意,属于中档题.18、(1);(2).【解析】

(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.19、(1)见解析;(2)见解析.【解析】分析:(1)先证明,再证明FG//平面PBD.(2)先证明平面,再证明BD⊥FG.详解:证明:(1)连结PE,因为G.、F为EC和PC的中点,,又平面,平面,所以平面(II)因为菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因为平面,平面,且,平面,平面,∴BD⊥FG.点睛:(1)本题主要考查空间位置关系的证明,意在考查学生对这些基础知识的掌握水平和空间想象转化能力.(2)证明空间位置关系,一般有几何法和向量法,本题利用几何法比较方便.20、(1);(2)证明见解析.【解析】

(1)分类讨论求解绝对值不等式即可;(2)由(1)中所得函数,求得最小值,再利用均值不等式即可证明.【详解】(1)当时,等价于,该不等式恒成立,当时,等价于,该不等式解集为,当时,等价于,解得,综上,或,所以不等式的解集为.(2),易得的最小值为1,即因为,,,所以,,,所以,当且仅当时等号成立.【点睛】本题考查利用分类讨论求解绝对值不等式,涉及利用均值不等式证明不等式,属综合中档题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论