湖北省阳新县兴国高级中学2026届数学高二上期末质量跟踪监视试题含解析_第1页
湖北省阳新县兴国高级中学2026届数学高二上期末质量跟踪监视试题含解析_第2页
湖北省阳新县兴国高级中学2026届数学高二上期末质量跟踪监视试题含解析_第3页
湖北省阳新县兴国高级中学2026届数学高二上期末质量跟踪监视试题含解析_第4页
湖北省阳新县兴国高级中学2026届数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省阳新县兴国高级中学2026届数学高二上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8 B.10C.15 D.162.点A是曲线上任意一点,则点A到直线的最小距离为()A. B.C. D.3.已知,是空间中的任意两个非零向量,则下列各式中一定成立的是()A. B.C. D.4.已知一个几何体的三视图如图,则其外接球的体积为()A. B.C. D.5.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.6.已知,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知函数,则()A.3 B.C. D.8.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.9.已知椭圆的左,右焦点分别为,,直线与C交于点M,N,若四边形的面积为且,则C的离心率为()A. B.C. D.10.下列数列中成等差数列的是()A. B.C. D.11.年月日,很多人的微信圈都在转发这样一条微信:“,所遇皆为对,所做皆称心””.形如“”的数字叫“回文数”,即从左到右读和从右到左读都一样的正整数,则位的回文数共有()A. B.C. D.12.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.3二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的一条渐近线的倾斜角为,则双曲线的离心率为___________.14.已知,,若x,a,b,y成等比数列,x,c,d,y成等差数列,则的最小值为_____________.15.已知定点,动点分别在直线和上运动,则的周长取最小值时点的坐标为__________.16.数列的前项和为,则的通项公式为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,若.(1)求的通项公式;(2)设,求数列的前项和.18.(12分)已知数列满足,,且成等比数列(1)求的值和的通项公式;(2)设,求数列的前项和19.(12分)为增强市民的环境保护意识,某市面向全市征召若干名宣传志愿者,成立环境保护宣传小组,现把该小组的成员按年龄分成、、、、这组,得到的频率分布直方图如图所示,已知年龄在内的人数为.(1)若用分层抽样的方法从年龄在、、内的志愿者中抽取名参加某社区的宣传活动,再从这名志愿者中随机抽取名志愿者做环境保护知识宣讲,求这名环境保护知识宣讲志愿者中至少有名年龄在内的概率;(2)在(1)的条件下,记抽取的名志愿者分别为甲、乙,该社区为了感谢甲、乙作为环境保护知识宣讲的志愿者,给甲、乙各随机派发价值元、元、元的纪念品一件,求甲的纪念品不比乙的纪念品价值高的概率.20.(12分)已知椭圆一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.21.(12分)如图,在四棱锥中,底面为正方形,底面,,为棱的中点.(1)求直线与所成角的余弦值;(2)求直线与平面所成角的正弦值;(3)求二面角的余弦值.22.(10分)已知函数(1)当时,求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据给定条件分类探求出拨动两枚算珠的结果计算得解.【详解】拨动图1算盘中的两枚算珠,有两类办法,由于拨动一枚算珠有梁上、梁下之分,则只在一个档拨动两枚算珠共有4种方法,在每一个档各拨动一枚算珠共有4种方法,由分类加法计数原理得共有8种方法,所以表示不同整数的个数为8.故选:A2、A【解析】动点在曲线,则找出曲线上某点的斜率与直线的斜率相等的点为距离最小的点,利用导数的几何意义即可【详解】不妨设,定义域为:对求导可得:令解得:(其中舍去)当时,,则此时该点到直线的距离为最小根据点到直线的距离公式可得:解得:故选:A3、C【解析】利用向量数量积的定义及运算性质逐一分析各选项即可得答案.【详解】解:对A:因为,所以,故选项A错误;对B:因为,故选项B错误;对C:因为,故选项C正确;对D:因为,故选项D错误故选:C.4、D【解析】根据三视图还原几何体,将几何体补成长方体,计算出几何体的外接球直径,结合球体体积公式即可得解.【详解】根据三视图还原原几何体,如下图所示:由图可知,该几何体三棱锥,且平面,将三棱锥补成长方体,所以,三棱锥的外接球直径为,故,因此,该几何体的外接球的体积为.故选:D【点睛】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点P,A,B,C构成的三条线段两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用求解5、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.6、A【解析】首先由两直线平行的充要条件求出参数的取值,再根据充分条件、必要条件的定义判断即可;【详解】因为直线与平行,所以,解得或,所以“”是“直线与平行”的充分不必要条件.故选:A.7、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B8、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.9、A【解析】根据题意可知四边形为平行四边形,设,进而得,根据四边形面积求出点M的坐标,再代入椭圆方程得出关于e的方程,解方程即可.【详解】如图,不妨设点在第一象限,由椭圆的对称性得四边形为平行四边形,设点,由,得,因为四边形的面积为,所以,得,由,得,解得,所以,即点,代入椭圆方程,得,整理得,由,得,解得,由,得.故选:A10、C【解析】利用等差数列定义,逐一验证各个选项即可判断作答.【详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C11、C【解析】根据“回文数”的对称性,只需计算前位数的排法种数即可,确定这四位数的选数的种数,利用分步乘法计数原理可得结果.【详解】根据“回文数”的对称性,只需计算前位数的排法种数即可,首位数不能放零,首位数共有种选择,第二位、第三位、第四位数均有种选择,因此,位的回文数共有个.故选:C.12、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用双曲线的渐近线的倾斜角,求解,关系,然后求解离心率,即可求解.【详解】双曲线一条渐近线的倾斜角为,可得,所以,所以双曲线的离心率为.故答案为:2.14、4【解析】根据等差数列和等比数列性质把用表示,然后由基本不等式得最小值【详解】由题意,,所以,当且仅当时等号成立故答案为:415、【解析】作点分别关于直线和的对称点,根据对称性即可求出三角形周长的最小值,利用三点共线求出的坐标.【详解】如图所示:定点关于函数对称点,关于轴的对称点,当与直线和的交点分别为时,此时的周长取最小值,且最小值为此时点的坐标满足,解得,即点.故答案为:.16、【解析】讨论和两种情况,进而利用求得答案.【详解】由题意,时,,时,,则,于是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据所给条件先求出首项,然后仿写,作差即可得到的通项公式;(2)根据(1)求出的通项公式,观察是由一个等差数列加上一个等比数列得到,要求其前项和,采用分组求和法结合公式法可求出前项和【小问1详解】当时,,解得;当时,,∴,化简得,∴是首项为1,公比为2的等比数列,∴,因此的通项公式为.【小问2详解】由(1)得,∴,∴,∴18、(1);;(2)【解析】(1)由于,所以可得,再由成等比数列,列方程可求出,从而可求出的通项公式;(2)由(1)可得,然后利用错位相减法求【详解】解:(1)数列{an}满足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比数列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇数时,an=n,n为偶数时,an=n﹣1所以数列{an}的通项公式为(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2•(2n﹣1)2]+22n﹣2•(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2•[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2•(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以19、(1);(2).【解析】(1)将名志愿者进行编号,列举出所有的基本事件,并确定所求事件所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率;(2)列举出甲、乙获得纪念品价值的所有情况,并确定所求事件所包含的情况,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:因为志愿者年龄在、、内的频率分别为、、,所以用分层抽样的方法抽取的名志愿者年龄在、、内的人数分别为、、.记年龄在内的名志愿者分别记为、、,年龄在的名志愿者分别记为、,年龄在内的名志愿者记为,则从中抽取名志愿者的情况有、、、、、、、、、、、、、、,共种可能;而至少有名志愿者的年龄在内的情况有、、、、、、、、,共种可能.所以至少有名志愿者的年龄在内的概率为.【小问2详解】解:甲、乙获得纪念品价值的情况有、、、、、、、、,共种可能;而甲的纪念品不比乙的纪念品价值高的情况有、、、、、,共种可能.故甲的纪念品不比乙的纪念品价值高的概率为.20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为,设,,直线AP的方程为,即.联立方程组消去y得.∵P,A为直线AP与椭圆C的交点,∴,即.把换成,得.∴,解得,当时,直线BP的方程为,经验证与椭圆C相切,不符合题意;当时,直线BP的方程为,符合题意.∴直线AP得方程为.【点睛】关键点点睛:两条直线关于直线对称,两直线的倾斜角互补,斜率互为相反数.21、(1);(2);(3).【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设.(1)写出、的坐标,利用空间向量法计算出直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论