版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省宿迁市泗洪中学2026届高二数学第一学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.2.经过点且与双曲线有共同渐近线的双曲线方程为()A. B.C. D.3.已知直线与平行,则系数()A. B.C. D.4.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.5.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③6.某大学数学系共有本科生1500人,其中一、二、三、四年级的人数比为,要用分层随机抽样的方法从中抽取一个容量为300的样本,则应抽取的三年级学生的人数为()A.20 B.40C.60 D.807.过点与直线平行的直线的方程是()A. B.C. D.8.数列中,满足,,设,则()A. B.C. D.9.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A B.C. D.10.已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A. B.C. D.11.如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A. B.C. D.12.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,则直线与平面所成角的正弦值为__________14.设、为正数,若,则的最小值是______,此时______.15.已知函数的导函数为,,,则的解集为___________.16.若命题“,不等式恒成立”为真命题,则实数a的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,已知椭圆E:(a>b>0)的左、右焦点分别为F1,F2,离心率为.点P是椭圆上的一动点,且P在第一象限.记的面积为S,当时,.(1)求椭圆E的标准方程;(2)如图,PF1,PF2的延长线分别交椭圆于点M,N,记和的面积分别为S1和S2.(i)求证:存在常数λ,使得成立;(ii)求S2-S1的最大值.18.(12分)如图,在四棱锥中,底面是矩形,,,,,为的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.19.(12分)已知数列是等差数列,数列是各项均为正数的等比数列,且,,.(1)求数列和的通项公式;(2)设,求数列的前项和.20.(12分)在等差数列中,,.(1)求的通项公式;(2)求数列的前项和.21.(12分)已知抛物线C:,过点且斜率为k的直线与抛物线C相交于P,Q两点.(1)设点B在x轴上,分别记直线PB,QB的斜率为.若,求点B的坐标;(2)过抛物线C的焦点F作直线PQ的平行线与抛物线C相交于M,N两点,求的值.22.(10分)已知双曲线,抛物线的焦点与双曲线的一个焦点相同,点为抛物线上一点.(1)求双曲线的焦点坐标;(2)若点到抛物线的焦点的距离是5,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C2、C【解析】共渐近线的双曲线方程,设,把点代入方程解得参数即可.【详解】设,把点代入方程解得参数,所以化简得方程故选:C.3、B【解析】由直线的平行关系可得,解之可得【详解】解:直线与直线平行,,解得故选:4、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.5、D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D6、C【解析】根据给定条件利用分层抽样的抽样比直接计算作答.【详解】依题意,三年级学生的总人数为,从1500人中用分层随机抽样抽取容量为300的样本的抽样比为,所以应抽取的三年级学生的人数为.故选:C7、A【解析】根据题意利用点斜式写出直线方程即可.【详解】解:过点的直线与直线平行,,即.故选:A.8、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力9、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得10、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题11、D【解析】每个点落入中的概率为,设落入中的点的数目为,题意所求概率为故选D12、D【解析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系,利用空间向量夹角公式进行求解即可【详解】建立如图所示的空间直角坐标系,设该正方体的棱长为1,所以,,,,因此,,,设平面的法向量为:,所以有:,令,所以,因此,设与的夹角为,直线与平面所成角为,所以有,故答案为:14、①.4②.【解析】巧用“1”改变目标式子的结果,借助均值不等式求最值即可.【详解】,当且仅当即,时等号成立.故答案为,【点睛】本题考查最值的求法,注意运用“1”的代换法和基本不等式,考查运算能力,属于中档题15、【解析】根据,构造函数,利用其单调性求解.【详解】因为,所以,令,则,,所以是减函数,又,即,,所以,所以,则的解集为故答案为:16、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【详解】解:因为,不等式恒成立,只要即可,因为,所以,则,当且仅当,即时取等号,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(i)存在常数,使得成立;(ii)的最大值为.【解析】(1)求点P的坐标,再利用面积和离心率,可以求出,然后就可以得到椭圆的标准方程;(2)设点的坐标和直线方程,联立方程,解出的y坐标值与P的坐标之间的关系,求以焦距为底边的三角形面积;利用均值定理当且仅当时取等号,求最大值.【小问1详解】先求第一象限P点坐标:,所以P点的坐标为,所以,所以椭圆E的方程为【小问2详解】设,易知直线和直线的坐标均不为零,因为,所以设直线的方程为,直线的方程为,由所以,因为,,所以所以同理由所以,因为,,所以所以,因为,,(i)所以所以存在常数,使得成立.(ii),当且仅当,时取等号,所以的最大值为.18、(1)证明见解析;(2).【解析】(1)由可得,再结合和线面垂直的判定定理可得平面,则,再由可得平面.(2)以为原点,,,为轴,轴,轴,建立空间直角坐标系如图所示,利用空间向量求解即可【详解】(1)证明:∵为矩形,且,∴.又∵,.∴,.又∵,,∴平面.∵平面,∴又∵,,∴平面.(2)解:以为原点,,,为轴,轴,轴,建立空间直角坐标系如图所示:则,,,,,∴,,设平面法向量则,即∴,∴∴直线与所成角的正弦值为.19、(1),;(2),.【解析】(1)利用等差数列与等比数列的通项公式即可得出;(2)利用分组求和的方法结合等差数列与等比数列的前n项和公式即可得出.【详解】(1)设等差数列的公差为,等比数列的公比为,且,依题意有,由,又,解得,∴,即,;(2)∵,∴前项和.∴前项和,.20、(1)(2)【解析】(1)设的公差为,根据题意列出关于和的方程组,求解方程组,再根据等差数列的通项公式,即可求出结果.(2)对数列中项的正负情况进行讨论,再结合等差数列的前项和公式,即可求出结果.【小问1详解】解:设的公差为d,因为,,所以解得故.【小问2详解】解:设的前项和为,则.当时,,所以所以;当时,.所以.21、(1)(2)【解析】(1)直线的方程为,其中,联立直线与抛物线方程,由韦达定理结合已知条件可求得点的坐标;(2)直线的方程为,利用倾斜角定义知,,联立直线与抛物线方程,利用弦长公式求得,进而得解.小问1详解】由题意,直线的方程为,其中.设,联立,消去得..,,即.,即.,,∴点的坐标为.【小问2详解】由题意,直线的方程为,其中,为倾斜角,则,设.联立,消去得...22、(1);(2).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饭店店铺活动方案策划(3篇)
- 展架制作施工方案(3篇)
- 2025至2030选矿设备能效优化路径与绿色技术应用研究报告
- 中国建筑装饰材料市场供需分析与竞争策略报告
- 中国建筑给排水系统市场供需状况及投资风险评估报告
- 中国建筑物联网行业市场设备连接方案及数据分析与运维管理报告
- 中国建筑机械智能化转型与创新应用前景研究报告
- 中国建筑智能化系统集成商竞争力评估
- 中国建筑工程监理行业市场发展趋势与前景展望战略研究报告
- 中国建筑工程机械行业成本控制与盈利模式优化研究
- 员工个人成长经历分享
- 自平衡多级泵培训课件
- 昼夜明暗图课件
- 压力性尿失禁教学课件
- 凝血六项课件
- 公路施工监理工作重点及难点分析
- 2025云南昆明公交集团招聘9人笔试历年备考题库附带答案详解2套试卷
- 雨课堂在线学堂《大数据技术与应用》作业单元考核答案
- 光伏电缆专业知识培训课件
- 养牛场消防知识培训
- 小儿体液不足的护理措施
评论
0/150
提交评论