河南省安阳市林州一中2026届高二上数学期末考试试题含解析_第1页
河南省安阳市林州一中2026届高二上数学期末考试试题含解析_第2页
河南省安阳市林州一中2026届高二上数学期末考试试题含解析_第3页
河南省安阳市林州一中2026届高二上数学期末考试试题含解析_第4页
河南省安阳市林州一中2026届高二上数学期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省安阳市林州一中2026届高二上数学期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《周髀算经》中有这样一个问题,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长依次成等差数列,若冬至、大寒、雨水的日影长的和为36.3尺,小寒、惊蛰、立夏的日影长的和为18.3尺,则冬至的日影长为()A4尺 B.8.5尺C.16.1尺 D.18.1尺2.过双曲线-=1(a>0,b>0)的左焦点F(-c,0)作圆O:x2+y2=a2的切线,切点为E,延长FE交双曲线于点P,若E为线段FP的中点,则双曲线的离心率为()A. B.C.+1 D.3.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.4.设,若直线与直线平行,则的值为()A. B.C.或 D.5.若点,在抛物线上,是坐标原点,若等边三角形的面积为,则该抛物线的方程是()A. B.C. D.6.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.487.已知函数的部分图象与轴交于点,与轴的一个交点为,如图所示,则下列说法错误的是()A. B.的最小正周期为6C.图象关于直线对称 D.在上单调递减8.数列1,-3,5,-7,9,…的一个通项公式为A. B.C. D.9.在中,若,则()A.150° B.120°C.60° D.30°10.已知对任意实数,有,且时,则时A. B.C. D.11.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定12.函数的图像大致是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.以正方体的对角线的交点为坐标原点O建立右手系的空间直角坐标系,其中,,,则点的坐标为______14.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为45°的直角梯形(如图所示),则该椭圆的离心率为_____.15.函数在上的最大值为______________16.在锐角中,角A,B,C的对边分别为a,b,c.若,,,则的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校在全体同学中随机抽取了100名同学,进行体育锻炼时间的专项调查.将调查数据按平均每天锻炼时间的多少(单位:分钟)分成五组:,,,,,得到如图所示的频率分布直方图.将平均每天体育锻炼时间不少于60分钟的同学定义为锻炼达标,平均每天体育锻炼时间少于60分钟的同学定义为锻炼不达标(1)求a的值,并估计该校同学平均每天体育锻炼时间的中位数;(2)在样本中,对平均每天体育锻炼时间不达标的同学,按分层抽样的方法抽取6名同学了解不达标的原因,再从这6名同学中随机抽取2名进行调研,求这2名同学中至少有一名每天体育锻炼时间(单位:分钟)在内的概率18.(12分)已知点,直线:,直线m过点N且与垂直,直线m交圆于两点A,B.(1)求直线m的方程;(2)求弦AB的长.19.(12分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和20.(12分)已知点P到点的距离比它到直线的距离小1.(1)求点P的轨迹方程;(2)点M,N在点P的轨迹上且位于x轴的两侧,(其中O为坐标原点),求面积的最小值.21.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求角C;(2)若,,求的周长.22.(10分)已知数列{an}是一个等差数列,且a2=1,a5=-5.(1)求{an}的通项an;(2)求{an}前n项和Sn的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设等差数列,用基本量代换列方程组,即可求解.【详解】由题意,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,记为数列,公差为d,则有,即,解得:,即冬至的日影长为16.1尺.故选:C2、A【解析】设F′为双曲线的右焦点,连接OE,PF′,根据圆的切线性质和三角形中位线得到|OE|=a,|PF′|=2a,利用双曲线的定义求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立关系即可求得离心率的值.【详解】不妨设E在x轴上方,F′为双曲线的右焦点,连接OE,PF′,如图所示:因为PF是圆O的切线,所以OE⊥PE,又E,O分别为PF,FF′的中点,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根据双曲线的定义,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故选A.【点睛】本题考查双曲线的离心率的求法,联想到双曲线的另一个焦点,作辅助线,利用双曲线的定义是求解离心率问题的有效方法.3、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A4、C【解析】根据直线的一般式判断平行的条件进行计算.【详解】时,容易验证两直线不平行,当时,根据两直线平行的条件可知:,解得或.故选:C.5、A【解析】根据等边三角形的面积求得边长,根据角度求得点的坐标,代入抛物线方程求得的值.【详解】设等边三角形的边长为,则,解得根据抛物线的对称性可知,且,设点在轴上方,则点的坐标为,即,将代入抛物线方程得,解得,故抛物线方程为故选:A6、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.7、D【解析】根据函数的图象求出,再利用函数的性质结合周期公式逆推即可求解.【详解】因为函数的图象与轴交于点,所以,又,所以,A正确;因为的图象与轴的一个交点为,即,所以,又,解得,所以,所以,求得最小正周期为,B正确;,所以是的一条对称轴,C正确;令,解得,所以函数在,上单调递减,D错误故选:D.8、C【解析】观察,奇偶相间排列,偶数位置为负,所以为,数字是奇数,满足2n-1,所以可求得通项公式.【详解】由符号来看,奇数项为正,偶数项为负,所以符号满足,由数值1,3,5,7,9…显然满足奇数,所以满足2n-1,所以通项公式为,选C.【点睛】本题考查观察法求数列的通项公式,解题的关键是培养对数字的敏锐性,属于基础题.9、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.10、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性11、B【解析】建立空间直角坐标系,求得平面BB1C1C的法向量和直线MN的方向向量,利用两向量垂直,得到线面平行.【详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故选:B.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利于空间向量判断线面平行,属于简单题目.12、B【解析】由导数判断函数的单调性及指数的增长趋势即可判断.【详解】当时,,∴在上单调递增,当时,,∴在上单调递减,排除A、D;又由指数函数增长趋势,排除C.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据已知点的坐标,确定出坐标系即可得【详解】如图,由已知得坐标系如图所示,轴过正方形的对角线交点,轴过中点,轴过中点,因此可知坐标为故答案为:14、【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故答案为:15、【解析】对原函数求导得,令,解得或,且所以原函数在上的最大值为考点:1.函数求导;2.利用导函数求最值16、【解析】根据求出,由向量数量积得到,使用余弦定理得到方程组,求出,利用面积公式求出结果.【详解】因为,所以,即,而因为是锐角三角形,所以,所以,所以,因为,所以,即,因为,所以,整理得:①,其中,即,因为,所以,即,解得:②,把②代入①得:,解得:,则的面积为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),中位数为64;(2).【解析】(1)由频率和为1求参数a,根据中位数的性质,结合频率直方图求中位数.(2)首先由分层抽样求6名同学的分布情况,再应用列举法求概率.【详解】(1)由题设,,可得,∴中位数应在之间,令中位数为,则,解得.∴该校同学平均每天体育锻炼时间的中位数为64.(2)由题设,抽取6名同学中1名在,2名在,3名在,若1名在为,2名在为,3名在为,∴随机抽取2名的可能情况有共15种,其中至少有一名在内的共12种,∴这2名同学中至少有一名每天体育锻炼时间(单位:分钟)在内的概率为.18、(1)(2)【解析】(1)求出斜率,用点斜式求直线方程;(2)利用垂径定理求弦长.【小问1详解】因为直线:,所以直线的斜率为.因为直线m过点N且与垂直,所以直线的斜率为,又过点,所以直线:,即【小问2详解】直线与圆相交,则圆心到直线的距离为:,圆的半径为,所以弦长19、(1)(2)【解析】(1)设等差数列的公差为d,由题意得列出方程组,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比数列的定义,可证数列为等比数列,结合前n项和公式,即可得答案.【小问1详解】设等差数列的公差为d,由题意得,解得,所以通项公式【小问2详解】由(1)可得,,又,所以数列是以4为首项,4为公比的等比数列,所以20、(1);(2).【解析】(1)根据给定条件可得点P到点的距离等于它到直线的距离,再由抛物线定义即可得解.(2)由(1)设出点M,N的坐标,再结合给定条件及三角形面积定理列式,借助均值不等式计算作答.【小问1详解】因点P到点的距离比它到直线的距离小1,显然点P与F在直线l同侧,于是得点P到点的距离等于它到直线的距离,则点P的轨迹是以F为焦点,直线为准线的抛物线,所以点P的轨迹方程是.【小问2详解】由(1)设点,,且,因,则,解得,S,当且仅当,即时取“=”,所以面积的最小值为.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论