版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广雅中学2026届高二数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的右焦点为F,短轴的一个端点为P,直线与椭圆相交于A、B两点.若,点P到直线l的距离不小于,则椭圆C离心率的取值范围为()A. B.C. D.2.下列求导错误的是()A. B.C. D.3.函数是偶函数且在上单调递减,,则的解集为()A. B.C. D.4.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.5.已知空间向量,,,则()A.4 B.-4C.0 D.26.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.57.将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A. B.C. D.8.已知是函数的导函数,则()A0 B.2C.4 D.69.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.10.过点且与直线垂直的直线方程是()A. B.C. D.11.下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题12.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆,分别是椭圆的上、下顶点,是左顶点,为左焦点,直线与相交于点,则________14.若,则___________15.已知直线,,若,则实数______16.以点为圆心,且与直线相切的圆的方程是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2020年10月,中共中央办公厅、国务院办公厅印发了《关于全面加强和改进新时代学校体育工作的意见》,某地积极开展中小学健康促进行动,发挥以体育智、以体育心功能,决定在2021年体育中考中再增加一定的分数,规定:考生须参加立定跳远、掷实心球、一分钟跳绳三项测试,其中一分钟跳绳满分20分,某校为掌握九年级学生一分钟跳绳情况,随机抽取了100名学生测试,其一分一分钟跳绳个数成绩(分)1617181920频率(1)若每分钟跳绳成绩不足18分,则认为该学生跳绳成绩不及格,求在进行测试的100名学生中跳绳成绩不及格的人数为多少?(2)该学校决定由这次跳绳测试一分钟跳绳个数在205以上(包括205)的学生组成“小小教练员"团队,小明和小华是该团队的成员,现学校要从该团队中选派2名同学参加某跳绳比赛,求小明和小华至少有一人被选派的概率18.(12分)已知数列的前n项和,(1)求数列的通项公式;(2)设,,求数列的前n项和19.(12分)已知直线,抛物线.(1)与有公共点,求的取值范围;(2)是坐标原点,过的焦点且与交于两点,求的面积.20.(12分)已知是抛物线的焦点,点在抛物线上,且.(1)求的方程;(2)过上一动点作的切线交轴于点.判断线段的中垂线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.21.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆的位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分22.(10分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设椭圆的左焦点为,由题可得,由点P到直线l的距离不小于可得,进而可求的范围,即可得出离心率范围.【详解】设椭圆的左焦点为,P为短轴的上端点,连接,如图所示:由椭圆的对称性可知,A,B关于原点对称,则,又,∴四边形为平行四边形,∴,又,解得:,点P到直线l距离:,解得:,即,∴,∴.故选:D.【点睛】关键点睛:本题考查椭圆离心率的求解,解题的关键是由椭圆定义得出,再根据已知条件得出.2、B【解析】根据导数运算求得正确答案.【详解】、、运算正确.,B选项错误.故选:B3、D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.4、D【解析】设,则,.所以当时,的最小值为.故选D.5、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.6、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B7、A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A8、D【解析】由导数运算法则求出导函数,再计算导数值【详解】由题意,,所以故选:D9、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C10、C【解析】根据两直线垂直时斜率乘积为,可以直接求出所求直线的斜率,再根据点斜式求出直线方程,最后化成一般式方程即可.【详解】因为直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选:C11、D【解析】根据命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识一一判断可得答案.【详解】解:A,由原命题与逆否命题的构成关系,可知A正确;B,当a=2>1时,函数在定义域内是单调递增函数,当函数定义域内是单调递增函数时,a>1.所以B正确;C,由于存在性命题的否定是全称命题,所以",使得"的否定是",均有,所以C正确;D,的根不一定是极值点,例如:函数,则=0,即x=0就不是极值点,所以“若为的极值点,则”的逆命题为假命题,故选D.【点睛】本题主要考查命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识,需牢记并灵活运用相关知识.12、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】先求出顶点和焦点坐标,求出直线直线与的斜率,利用到角公式求出的正切值,进而求出正弦值.【详解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案为:14、【解析】先求出函数的导函数,再求出,即可得出答案.【详解】解:由,得,则,所以,所以,所以.故答案为:.15、【解析】由直线垂直可得到关于实数a的方程,解方程即可.【详解】由直线垂直可得:,解得:.故答案为:16、;【解析】根据相切可得圆心到直线距离即为圆的半径,利用点到直线距离公式解出半径,即可得到圆的方程【详解】由题,设圆心到直线的距离为,所以,因为圆与直线相切,则,所以圆的方程为,故答案为:【点睛】本题考查利用直线与圆的位置关系求圆的方程,考查点到直线距离公式的应用三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)14人;(2).【解析】(1)根据频率直方表区间成绩及其对应的频率,即可求每分钟跳绳成绩不足18分的人数.(2)由表格数据求出一分钟跳绳个数在205以上(包括205)的学生共6人,列举出六人中选两人参加比赛的所有情况、小明和小华至少有一个被选派的情况,由古典概型的概率求法即可得小明和小华至少有一人被选派的概率.【详解】(1)由表可知,每分钟跳绳成绩不足18分,即为成绩是16分或17分,在进行测试的100名学生中跳绳成绩不及格人数为:人)(2)一分钟跳绳个数在205以上(包括205)的学生频率为,其人数为:(人),记小明为,小华为,其余四人为,则在这六人中选两人参加比赛的所有情况为:,共15种,其中小明和小华至少有一个被选派的情况有:,共9种,小明和小华至少有一人被选派的概率为:.18、(1);(2)【解析】(1)将代入可求得.根据通项公式与前项和的关系,可得数列为等比数列,由等比数列的通项公式即可求得数列的通项公式.(2)由(1)可得数列的通项公式,代入中,结合裂项法求和即可得前n项和.【详解】(1)当时,由得;当时,由得是首项为3,公比为3的等比数列当,满足此式所以(2)由(1)可知,【点睛】本题考查了通项公式与前项和的关系,裂项法求和的应用,属于基础题.19、(1);(2).【解析】(1)联立直线l与抛物线C的方程消去x,借助判别式建立不等式求解作答.(2)利用(1)中信息求出点纵坐标差的绝对值即可计算作答.【小问1详解】依题意,由消去x并整理得:,因与有公共点,则,解得:,所以的取值范围是.【小问2详解】抛物线的焦点,则,设,由(1)知,,则,因此,,所以的面积.20、(1)(2)过定点,定点为【解析】(1)利用抛物线的定义求解;(2)设直线的方程为,,与抛物线方程联立,根据直线与抛物线C相切,由求得,再得到,写出线段的中垂线方程求解.【小问1详解】解:由题意得,,解得=2p,因为点M(,4)在抛物线C上,所以42=2p=4p2,解得p=2,所以抛物线C的标准方程为.【小问2详解】由已知得,直线的斜率存在且不为0,所以设直线的方程为,与抛物线方程联立并消去得:,因为直线与抛物线C相切,所以,得,,所以,得,在中,令得,所以,所以线段中点为,线段的中垂线方程为,所以线段的中垂线过定点.21、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C的圆心为,半径为因为两圆的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卫生院防火防气安全制度
- 书屋借阅制度
- 2025-2026学年湖南省百师联盟高三上学期第一次调研考历史试题(解析版)
- 中铁领导带班制度
- 耐药卵巢癌手术中肠道并发症的防治策略
- 产品交互流程逻辑规范手册
- 冷链仓储物流管理与温控手册
- 电池化成工艺管控手册
- 2026年房产中介代理合同
- 航空航天工具设备管理手册
- 口述史研究活动方案
- 别克英朗说明书
- 地下管线测绘课件
- 房屋租赁合同txt
- 珍稀植物移栽方案
- THBFIA 0004-2020 红枣制品标准
- GB/T 34336-2017纳米孔气凝胶复合绝热制品
- GB/T 20077-2006一次性托盘
- GB/T 10046-2008银钎料
- GA 801-2019机动车查验工作规程
- 中层管理干部领导力提升课件
评论
0/150
提交评论