河南省十所名校2026届高二上数学期末经典试题含解析_第1页
河南省十所名校2026届高二上数学期末经典试题含解析_第2页
河南省十所名校2026届高二上数学期末经典试题含解析_第3页
河南省十所名校2026届高二上数学期末经典试题含解析_第4页
河南省十所名校2026届高二上数学期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省十所名校2026届高二上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在的图象大致为()A. B.C D.2.如图在平行六面体中,与的交点记为.设,,,则下列向量中与相等的向量是()A. B.C. D.3.已知椭圆与双曲线有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则当取最大值时的值为()A. B.C. D.4.已知,则在方向上的投影为()A. B.C. D.5.函数在区间上平均变化率等于()A. B.C. D.6.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.367.设双曲线与椭圆:有公共焦点,.若双曲线经过点,设为双曲线与椭圆的一个交点,则的余弦值为()A. B.C. D.8.数列,,,,…的一个通项公式为()A. B.C. D.9.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)10.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直,若点C到平面AB1D1的距离为,则直线与平面所成角的余弦值为()A. B.C. D.11.计算复数:()A. B.C. D.12.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线的方向向量为,平面的一个法向量为,则直线与平面所成角的正弦值为______.14.已知,求_____________.15.与双曲线有共同的渐近线,并且经过点的双曲线方程是______16.已知,满足约束条件则的最小值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是等差数列,其前n项和为,,,数列满足(且),.(1)求和的通项公式;(2)求数列的前n项和.18.(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)若不过点的直线交椭圆于两点,求面积的最大值.19.(12分)已知一张纸上画有半径为4的圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.20.(12分)已知圆:,定点,Q为圆上的一动点,点P在半径CQ上,且,设点P的轨迹为曲线E.(1)求曲线E的方程;(2)过点的直线交曲线E于A,B两点,过点H与AB垂直的直线与x轴交于点N,当取最大值时,求直线AB的方程.21.(12分)已知椭圆E:的离心率,且右焦点到直线的距离为.(1)求椭圆的标准方程;(2)四边形的顶点在椭圆上,且对角线,过原点,若,证明:四边形的面积为定值.22.(10分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.2、B【解析】利用空间向量的加法和减法法则可得出关于、、的表达式.【详解】故选:B.3、D【解析】由椭圆的定义及双曲线的定义结合余弦定理可得,,的关系,由此可得,再利用重要不等式求最值,并求此时的的值.【详解】设为第一象限的交点,、,则、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,当且仅当,即,时等号成立,此时故选:D4、C【解析】利用向量数量积的几何意义即得【详解】,故在方向上的投影为:故选:C5、C【解析】根据平均变化率的定义算出答案即可.【详解】函数在区间上的平均变化率等于故选:C6、B【解析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7、A【解析】求出双曲线方程,根据椭圆和双曲线的第一定义求出的长度,从而根据余弦定理求出的余弦值【详解】由题得,双曲线中,所以,双曲线方程为:,假设在第一象限,根据椭圆和双曲线的定义可得:,解得:,,所以根据余弦定理,故选:A8、B【解析】根据给定数列,结合选项提供通项公式,将n代入验证法判断是否为通项公式.【详解】A:时,排除;B:数列,,,,…满足.C:时,排除;D:时,排除;故选:B9、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.10、A【解析】先由等面积法求得的长,再以为坐标原点,建立如图所示的空间直角坐标系,运用线面角的向量求解方法可得答案【详解】如图,连接交于点,过点作于,则平面,则,设,则,则根据三角形面积得,代入解得以为坐标原点,建立如图所示的空间直角坐标系则,,设平面的法向量为,,,则,即,令,得,所以直线与平面所成的角的余弦值为,故选:11、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.12、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量夹角公式进行求解即可.【详解】设与的夹角为,直线与平面所成角为,所以,故答案为:14、【解析】根据导数的定义即可求解.【详解】,所以,故答案为:.15、【解析】设双曲线的方程为,将点代入方程可求的值,从而可得结果【详解】设与双曲线有共同的渐近线的双曲线的方程为,该双曲线经过点,所求的双曲线方程为:,整理得故答案为【点睛】本题考查双曲线的方程与简单性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.与共渐近线的双曲线方程可设为,只需根据已知条件求出即可.16、2【解析】由题意,根据约束条件作出可行域图,如图所示,将目标函数转化为,作出其平行直线,并将其在可行域内平行上下移动,当移到顶点时,在轴上的截距最小,即.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据,列方程组即可求解数列的通项公式,根据可求数列的通项公式;(2)化简,利用裂项相消法求该数列前n项和.【小问1详解】设等差数列公差为d,∵,∴,∵公差,∴.由得,即,∴数列是首项为,公比为2的等比数列,∴;【小问2详解】∵,∴,.18、(1);(2).【解析】(1)根据,可设,,求出,得到椭圆的方程,代入点的坐标,求出,即可得出结果.(2)设出点,的坐标,直线与椭圆方程联立,利用韦达定理求出弦长,由点到直线的距离公式,三角形的面积公式及基本不等式可得结论.【详解】(1)因为,所以设,,则,椭圆的方程为.代入点的坐标得,,所以椭圆的方程为.(2)设点,的坐标分别为,,由,得,即,,,,.,点到直线的距离,的面积,当且仅当,即时等号成立.所以当时,面积的最大值为.【点睛】本题主要考查了椭圆的标准方程和性质,直线与椭圆相交问题.属于中档题.19、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:∴可知,,设折痕与和分别交于M,N两点,则MN垂直平分,∴,又∵,∴,∴M的轨迹是以O,A为焦点,4为长轴的椭圆.∴M的轨迹方程C为;【小问2详解】设,,则的周长为当轴时,l的方程为,,,当l与x轴不垂直时,设,由得,∵>0,∴,,,令,则,,∵,∴,∴.综上可知,S的取值范围是20、(1)(2)或【解析】(1)结合已知条件可得到点P在线段QF的垂直平分线上,然后利用椭圆定义即可求解;(2)结合已知条件设出直线的方程,然后联立椭圆方程,利用弦长公式求出,再设出直线NH的方程,求出N点坐标,进而求出,然后表示出,再利用换元法和均值不等式求解即可.【小问1详解】设点的坐标为,∵,∴点P在线段QF垂直平分线上,∴,又∵,∴∴点P在以C,F为焦点的椭圆上,且,∴,∴曲线的方程为:.【小问2详解】设直线AB方程为,,由,解得,,解得,由韦达定理可知,,,∴∵AB与HN垂直,∴直线NH的方程为,令,得,∴,又由,∴,∴设则∴当且仅当即时等号成立,有最大值,此时满足,故,所以直线AB的方程为:,即或.21、(1);(2)证明见解析.【解析】(1)根据已知条件列出关于a、b、c的方程组求解即可;(2)设,代入,利用韦达定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论