版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公务员考试数量关系专题练习第一部分单选题(100题)1、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。2、80×35×15的值是()。
A、42000
B、36000
C、33000
D、48000
【答案】:答案:A
解析:如果直接进行计算,不免有些麻烦,但我们可以很容易发现45和15都有5这个因子,这其中又有80,所以我们可以对采用凑整法来进行处理。原式=80×9×5×5×3=80×25×27=2000×27=54000。本题运用了整除法。题干中有35,所以结果应有7这个因子,其应为7所整除,观察选项。故选A。3、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故选C。4、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。5、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。6、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。7、3,10,31,94,(),850
A、250
B、270
C、282
D、283
【答案】:答案:D
解析:10=3×3+1,31=10×3+1,94=31×3+1,每一项等于前一项乘以3加上1,即所填数字为94×3+1=283。故选D。8、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。9、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。10、23,29,31,37,()
A、41
B、40
C、43
D、45
【答案】:答案:A
解析:23,29,31,37为连续的质数列23,29,31,37,即所填数字为41。故选A。11、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多少年后3个孙子的年龄之和等于祖父的年龄?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。12、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。13、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。14、一项考试共有35道试题,答对一题得2分,答错一题扣1分,不答则不得分。一名考生一共得了47分,那么,他最多答对()题。
A、26
B、27
C、29
D、30
【答案】:答案:B
解析:设答对了x道,答错y道,则可知2x-y=47,存在没答题目的情况,因此x+y≤35。题干问最多答对题数,则从最大的开始代入。D选项,x=30,代入2x-y=47,解得y=13,此时x+y超过35,不符;C项x=29,y=11,此时x+y超过35,不符;B项x=27,y=7,剩余1道没答,符合题意。故选B。15、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。16、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。17、1/2,1,1,(),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13连续质数列。故选C。18、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。19、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。20、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。21、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。22、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。23、某机构调查居民订阅报纸的情况,发现30%的家庭订阅了日报,35%的家庭订阅了早报,45%的家庭订阅了晚报,10%的家庭没有订阅任何一种报纸,若每个家庭都不会同时订早报和晚报,则同时订阅日报和早报的家庭的比例在多少范围之内?()
A、0~10%
B、10%~20%
C、0~20%
D、20%~30%
【答案】:答案:C
解析:根据“都不会同时订阅”可知,同时订三种报纸的为0。设同时订阅日报和早报的为x,同时订阅日报和晚报的为y。根据三集合容斥原理得:100%=30%+35%+45%-x-y-0+0+10%,解得x+y=20%。因此x在0~20%之间。故选C。24、接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的人数为88-15=73人,则有电脑但没手机(②部分)的人数为76-73=3人。故选D。25、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。26、2,2,3,4,9,32,()
A、129
B、215
C、257
D、283
【答案】:答案:D
解析:2×2-1=3,3×2-2=4,4×3-3=9,9×4-4=32,第n+2项=第n项×第(n+1)项-n(n=1,2,…),即所填数字为32×9-5=283。故选D。27、张老师家四代同堂,且从父亲、张老师、儿子到孙子,每两代人的年龄差相同。5年前张老师父亲的年龄是儿子的3倍,8年后张老师的年龄是孙子的5倍。问今年四个人的年龄之和为()。
A、168岁
B、172岁
C、176岁
D、180岁
【答案】:答案:C
解析:父亲、张老师、儿子、孙子每两代人年龄差相同,设此年龄差为d,则父亲为(儿+2d),张老师为 (儿+d),孙子为(儿-d),因此四人年龄总和为(4儿+2d)。由5年前张老师父亲年龄是儿子的3倍即比儿子大2倍,即2d=2(儿-5)①;由8年后张老师年龄是孙子的5倍即比孙子大4倍即2d=4(儿-d+8)②;由①②可得儿=31,d=26,因此四人年龄总和为4儿+2d=4×31+2×26=176(岁)。故选C。28、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。29、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。30、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。31、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填数字应为(136+1)×5=685。故选A。32、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。33、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。34、老王和老赵分别参加4门培训课的考试,两人的平均分数分别为82和90分,单人的每门成绩都为整数且彼此不相等。其中老王成绩最高的一门和老赵成绩最低的一门课分数相同,问老赵成绩最高的一门课最多比老王成绩最低的一门课高多少分?()
A、20
B、22
C、24
D、26
【答案】:答案:D
解析:最值问题中构造数列。老赵4门比老王高(90-82)×4=32分。由于老王的成绩最高的一门和老赵成绩最低的一门相等,而每人的各个成绩都不相等,求老赵最高的一门最多比老王成绩最低的一门高多少分,则应该使老赵的其他两门分数尽可能低,而老王的其他两门分数尽可能高,则可设老王的第三高分数为x,则第二高的分数为x+1,则最高分数为x+2,等于老赵最低的分数x+2,则老赵第三高分数为x+3,第二高分数为x+4,构造完数列后,可以得到老赵的三课的分数比老王高6分,一共高32分,所以老赵最高的一门最多比老王成绩最低的一门高32-6=26分。故选D。35、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。36、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各项减2后为质数列,故下一项为17+2=19。故选B。37、2,3,7,22,155,()
A、2901
B、3151
C、3281
D、3411
【答案】:答案:D
解析:7=3×2+1,22=7×3+1,155=22×7+1,即所填数字为22×155+1=3411。故选D。38、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。39、2,5,9,19,37,75,()
A、140
B、142
C、146
D、149
【答案】:答案:C
解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇数项,每项乘以2加上1等于后一项;偶数项,每项乘以2减去1等于后一项,即所填数字为75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三项=第一项×2+第二项,即所填数字为37×2+75=149。故选C。40、某服装店有一批衬衣共76件,分别卖给了33位顾客,每位顾客最多买了3件。衬衣定价为100元,买1件按原价,买2件总价打九折,买3件总价打八折。最后卖完这批衬衣共收入6460元,则买了3件的顾客有()位。
A.4
B.8
C.14
D.15
【答案】:答案:C
解析:由题意可设买了1件、2件、3件衣服的人数分别为x、y、z人,则可得x+y+z=33,x+2y+3z=76,,联立求解可得x=4,y=15,z=14。故正确答案为C。41、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。42、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。43、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。44、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三项=第二项×2+第一项,99=41×2+17。故选B。45、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。46、33.1,88.1,47.1,()
A、29.3
B、34.5
C、16.1
D、28.9
【答案】:答案:C
解析:小数点左边:33、88、47、16成奇、偶、奇、偶的规律,小数点右边:1、1、1、1等差。故选C。47、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。48、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。49、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本题为隔项递推数列,存在关系:第三项=第二项-第一项,第五项=第四项-第三项,……因此未知项为9-6=3。故选C。50、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。51、当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?()
A、45
B、50
C、55
D、60
【答案】:答案:A
解析:设蒸发后盐水质量为x千克,由盐水中盐的质量不变可得,60×30%=40%x,解得x=45。故选A。52、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。53、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。54、2,6,30,210,2310,()
A、30160
B、30030
C、40300
D、32160
【答案】:答案:B
解析:依次将相邻两个数中后一个数除以前一个数得3,5,7,11,为一个质数数列,即所填数字为2310×13=30030。故选B。55、一人上楼,边走边数台阶。从一楼走到四楼,共走了54级台阶。如果每层楼之间的台阶数相同,他一直要走到八楼,问他从一楼到八楼一共要走多少级台阶?()
A、126
B、120
C、114
D、108
【答案】:答案:A
解析:从一楼走到四楼,共走了54级台阶,而他实际走了3层楼的高度,所以每层楼的台阶数为54÷3=18级。他从一楼到八楼一共要走7层楼,因此共要走7×18=126级台阶。故选A。56、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。57、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少?()
A、165人
B、203人
C、267人
D、199人
【答案】:答案:C
解析:设至少有x人两种课程都选,则359-x+408-x+x≤500,解得x≥267,则两种课程都选的学生至少有267人。故选C。58、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。59、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。60、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()
A、2
B、3
C、4
D、5
【答案】:答案:C
解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。61、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。
A、800吨
B、1080吨
C、1360吨
D、1640吨
【答案】:答案:D
解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。62、某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天。
A.3
B.4
C.5
D.6
【答案】:答案:D
解析:方法一:赋值法,赋值每台收割机每天的工作效率为1,则工作总量为36×14,剩下的36×7由36+4=40台收割机完成,技术改造后每台收割机效率为,故剩下需要的时间为。方法二:比例法。由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40×(1+5%)=42台收割机的工作效率。效率比为6∶7,故所有时间比为7∶6,还需6天即可完成。故正确答案为D。63、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一项乘以2,然后加第二项的平方等于第三项。2×2+3×3=13。第二项乘以2,然后加第三项的平方等于第四项。3×2+13×13=175。第三项乘以2,然后加第四项的平方等于第五项。13×2+175×175=30651。故选B。64、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方数?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个平方数为偶数的是100,需要再过(100-64)÷2=18年。故选B。65、8,16,22,24,()
A、18
B、22
C、26
D、28
【答案】:答案:A
解析:8×2-0=16,16×2-10=22,22×2-20=24,前一项×2-修正项=后一项。即所填数字为24×2-30=18。故选A。66、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。67、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。68、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。69、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填数字应为(136+1)×5=685。故选A。70、102,314,526,()
A、624
B、738
C、809
D、849
【答案】:答案:B
解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。71、某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价。结果只销售了商品总量的30%。为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元。问商店是按定价打几折销售的?()
A、九折
B、七五折
C、六折
D、四八折
【答案】:答案:C
解析:由只销售了总量的30%知,打折前销售额为10000×(1+25%)×30%=3750元;设此商品打x折出售,剩余商品打折后,销售额为10000×(1+25%)×(1-30%)x=8750x。根据亏本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故选C。72、2,4,12,32,88,()
A、140
B、180
C、220
D、240
【答案】:答案:D
解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三项=2×(第一项+第二项),即所填数字为2×(88+32)=240。故选D。73、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。74、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。75、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故选C。76、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。77、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。78、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格最高可能为多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=1,则x=4,此时满足题意。故选D。79、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。80、1,1,2,8,64,()
A、1024
B、1280
C、512
D、128
【答案】:答案:A
解析:后一项除以前一项得1、2、4、8、(16),构成公比为2的等比数列,64×16=(1024)。故选B。81、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。82、4,10,34,130,()
A、184
B、258
C、514
D、1026
【答案】:答案:C
解析:解法一:二级等差数列变式。解法二:从第三项开始,第三项等于第二项的5倍减去第一项的4倍,即34=5×10-4×4,130=5×34-4×10,(514)=5×130-4×34。故选C。83、甲乙两车早上分别同时从A、B两地出发驶向对方所在城市,在分别到达对方城市并各自花费1小时卸货后,立刻出发以原速返回出发地。甲车的速度为60千米/小时,乙车的速度为40千米/小时,两地之间相距480千米。问两车第二次相遇距离两车早上出发经过了多少个小时?()
A、13.4
B、14.4
C、15.4
D、16.4
【答案】:答案:C
解析:根据“分别同时从A.B两地出发”、“两车第二次相遇”,可知考查的是两端出发的多次相遇问题,公式为(v1+v2)t=(2n-1)S。代入数据得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花费一小时卸货”,故经过了14.4+1=15.4小时。故选C。84、一只天平有7克、2克砝码各一个,如果需要将140克的盐分成50克、90克各一份,至少要称几次?()
A、六
B、五
C、四
D、三
【答案】:答案:D
解析:第一步,用天平将140g分成两份,每份70g;第二步,将其中的一份70g,平均分成两份35g;第三步,将砝码分别放在天平的两边,将35g盐放在天平两边至平衡,则每边为(35+7+2)÷2=22g,则砝码为2g的一边,盐就为20g,将其与第一步剩下的70g盐混合,得到90g,剩下的就是50g。即一共称了三次。故选D。85、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。86、1,1,2,6,30,240,()
A、1200
B、1800
C、2400
D、3120
【答案】:答案:D
解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波那契数列2、3、5、8,即后一项是前面2项的和,8后面是13,240后面应该是240*13=3120。故选D。87、13×99+135×999+1357×9999的值是()。
A、13507495
B、13574795
C、13704675
D、13704795
【答案】:答案:D
解析:原式=13×(100-1)+135×(1000-1)+1357×(10000-1)=1300+135000+13570000-(13+135+1357)=13704795。故选D。88、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。89、甲乙两人需托运行李。托运收费标准为10kg以下6元/kg,超出10kg部分每公斤收费标准略低一些。已知甲乙两人托运费分别为109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收费标准比10kg以内的低了()元。
A.1.5
B.2.5
C.3.5
D.4.5
【答案】:答案:A
解析:解析一:分段计费问题,设乙的行李超出的重量为x,即乙的行李总重量为10+x,则甲的行李重量为1.5×(10+x)。所以计算超出部分的重量为1.5×(10+x)-10=5+1.5x,超出金额为49.5元,所以按照比例,乙的行李超
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年金湖县招教考试备考题库含答案解析(必刷)
- 2025年旺苍县招教考试备考题库含答案解析(夺冠)
- 2026年伊犁职业技术学院单招职业适应性测试题库带答案解析
- 2024年红安县招教考试备考题库带答案解析(必刷)
- 2025年徐水县招教考试备考题库及答案解析(夺冠)
- 2025年内蒙古警察学院马克思主义基本原理概论期末考试模拟题附答案解析
- 2025年天津传媒学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 2025年石家庄农林职业学院马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2025年四川大学马克思主义基本原理概论期末考试模拟题带答案解析
- 2025年广西水利电力职业技术学院单招综合素质考试题库附答案解析
- 山东省济南市2025-2026年高三上第一次模拟考试生物+答案
- 2026年广州中考政治真题变式训练试卷(附答案可下载)
- 2026国家国防科技工业局所属事业单位第一批招聘62人备考题库及参考答案详解1套
- 2025-2026学年天津市河东区八年级(上)期末英语试卷
- 北师大版《数学》七年级上册知识点总结
- 物资管理实施细则
- 安全健康与自我管理学习通超星期末考试答案章节答案2024年
- 人教版2019高中英语选择性必修二(课文语法填空)
- 2022年初会《经济法》真题答案
- GB/T 22551-2023旅居车辆居住要求
- mdvx节能证书及第三方检测报告cqc
评论
0/150
提交评论