版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金属-有机聚合物催化材料研究进展文献综述传统金属-有机聚合物用作电催化反应时,需要经过高温热解,得到衍生碳材料具有良好的导电性,可用作电催化反应。但是高温热解后的材料结构和组成不明确,难以实现材料结构的精准构筑,给催化反应机理的研究带来挑战。所以合成可直接用于电催化反应的金属-有机聚合物材料,研究工作者做了不同尝试,也得到了很多成果,目前最常用的方法主要有:将金属-有机聚合物与碳材料复合、电沉积合成超薄金属-有机聚合物材料、选择具有多电子的金属团簇具有共轭结构的配体合成PMOF,对传统金属-有机聚合物改性使其导电等。目前,通过材料与导电载体的复合,实现材料整体导电,材料载体一般为碳黑,碳纳米管,石墨烯、氧化石墨烯(GO)等物质,利用碳基的接受电子的能力,以及聚合物的供电子能力,实现电子在有机聚合物和碳载体之间的传输,从而实现材料导电。材料与导电载体有两种结合方式,机械复合和原位生长,两者之间的区别在于,碳载体加入的次序。机械复合,指在材料合成之后,将材料与碳基一起进行机械研磨,或者通过超声等方式进行复合。原位生长指在材料的合成过程中加入碳载体,通过控制合成过程中条件,实现材料在碳材料表面的生长,从而实现材料整体的导电,可直接用作氧还原催化剂。该方法避免了碳化过程中结构的坍塌,以及活性组分的流失。在2019年,向中华团队ADDINEN.CITE<EndNote><Cite><Author>Peng</Author><Year>2019</Year><RecNum>65</RecNum><DisplayText><styleface="superscript">[63]</style></DisplayText><record><rec-number>65</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615998990">65</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Peng,Peng</author><author>Shi,Lei</author><author>Huo,Feng</author><author>Mi,Chunxia</author><author>Wu,Xiaohong</author><author>Zhang,Suojiang</author><author>Xiang,Zhonghua</author></authors></contributors><titles><title>Apyrolysis-freepathtowardsuperiorlycatalyticnitrogen-coordinatedsingleatom</title><secondary-title>ScienceAdvances</secondary-title></titles><periodical><full-title>ScienceAdvances</full-title></periodical><pages>eaaw2322</pages><volume>5</volume><number>8</number><dates><year>2019</year></dates><urls><related-urls><url>/content/5/8/eaaw2322.abstract</url></related-urls></urls><electronic-resource-num>10.1126/sciadv.aaw2322</electronic-resource-num></record></Cite></EndNote>[63]发表了一篇文章,采用机械研磨的方法,将合成铁酞氰聚合物与石墨烯一起研磨,实现铁酞氰在石墨烯上表面的均匀生长,通过铁酞氰与石墨烯的物理结合,实现两者电子云的重叠,提高整体的导电性能,合成了一种氮掺杂单原子催化剂,具有良好的氧还原(ORR)催化性能,在0.1MKOH溶液中,半波电位高达880-910mV,优于Pt/C氧还原半波电位性能,860mVvsRHE,Tafel斜率仅为31.7mV/dec,并且在锌-空气电池的应用上,表现出优异的功率密度123.43mW·cm−2,而商业Pt/C在同样条件下功率密度为113.81mW·cm−2,在电流密度为100mA·cm-2时,比容量为732
mAh/gZn,良好的稳定性,300循环后,性能只衰减0.1%。材料结构和性能如图1-4所示。通过该方法合成的材料,避免了碳化过程中金属团聚等问题,分子结构明确,使得催化反应过程中机理更加清晰。图1-4:材料结构及氧还原催化性能ADDINEN.CITE<EndNote><Cite><Author>Peng</Author><Year>2019</Year><RecNum>65</RecNum><DisplayText><styleface="superscript">[63]</style></DisplayText><record><rec-number>65</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615998990">65</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Peng,Peng</author><author>Shi,Lei</author><author>Huo,Feng</author><author>Mi,Chunxia</author><author>Wu,Xiaohong</author><author>Zhang,Suojiang</author><author>Xiang,Zhonghua</author></authors></contributors><titles><title>Apyrolysis-freepathtowardsuperiorlycatalyticnitrogen-coordinatedsingleatom</title><secondary-title>ScienceAdvances</secondary-title></titles><periodical><full-title>ScienceAdvances</full-title></periodical><pages>eaaw2322</pages><volume>5</volume><number>8</number><dates><year>2019</year></dates><urls><related-urls><url>/content/5/8/eaaw2322.abstract</url></related-urls></urls><electronic-resource-num>10.1126/sciadv.aaw2322</electronic-resource-num></record></Cite></EndNote>[63]Figure1-4.MaterialstructureandoxygenreductioncatalyticperformanceADDINEN.CITE<EndNote><Cite><Author>Peng</Author><Year>2019</Year><RecNum>65</RecNum><DisplayText><styleface="superscript">[63]</style></DisplayText><record><rec-number>65</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615998990">65</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Peng,Peng</author><author>Shi,Lei</author><author>Huo,Feng</author><author>Mi,Chunxia</author><author>Wu,Xiaohong</author><author>Zhang,Suojiang</author><author>Xiang,Zhonghua</author></authors></contributors><titles><title>Apyrolysis-freepathtowardsuperiorlycatalyticnitrogen-coordinatedsingleatom</title><secondary-title>ScienceAdvances</secondary-title></titles><periodical><full-title>ScienceAdvances</full-title></periodical><pages>eaaw2322</pages><volume>5</volume><number>8</number><dates><year>2019</year></dates><urls><related-urls><url>/content/5/8/eaaw2322.abstract</url></related-urls></urls><electronic-resource-num>10.1126/sciadv.aaw2322</electronic-resource-num></record></Cite></EndNote>[63]2018年,D.M团队ADDINEN.CITE<EndNote><Cite><Author>Micheroni</Author><Year>2018</Year><RecNum>63</RecNum><DisplayText><styleface="superscript">[61]</style></DisplayText><record><rec-number>63</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615998759">63</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Micheroni,Daniel</author><author>Lan,Guangxu</author><author>Lin,Wenbin</author></authors></contributors><titles><title>EfficientElectrocatalyticProtonReductionwithCarbonNanotube-SupportedMetal–OrganicFrameworks</title><secondary-title>JournaloftheAmericanChemicalSociety</secondary-title></titles><periodical><full-title>JournaloftheAmericanChemicalSociety</full-title></periodical><pages>15591-15595</pages><volume>140</volume><number>46</number><dates><year>2018</year><pub-dates><date>2018/11/21</date></pub-dates></dates><publisher>AmericanChemicalSociety</publisher><isbn>0002-7863</isbn><urls><related-urls><url>/10.1021/jacs.8b09521</url></related-urls></urls><electronic-resource-num>10.1021/jacs.8b09521</electronic-resource-num></record></Cite></EndNote>[61]在碳纳米管上生长卟啉金属MOFs材料,提高了电子在碳纳米管和卟啉之间传导的能力,使得材料导电性能良好,可直接应用于电催化反应。龙晓静ADDINEN.CITE<EndNote><Cite><Author>Long</Author><Year>2019</Year><RecNum>64</RecNum><DisplayText><styleface="superscript">[62]</style></DisplayText><record><rec-number>64</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615998817">64</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Long,Xiaojing</author><author>Li,Daohao</author><author>Wang,Binbin</author><author>Jiang,Zhenjie</author><author>Xu,Wenjia</author><author>Wang,Bingbing</author><author>Yang,Dongjiang</author><author>Xia,Yanzhi</author></authors></contributors><titles><title>HeterocyclizationStrategyforConstructionofLinearConjugatedPolymers:EfficientMetal-FreeElectrocatalystsforOxygenReduction</title><secondary-title>AngewandteChemieInternationalEdition</secondary-title></titles><periodical><full-title>AngewandteChemieInternationalEdition</full-title></periodical><pages>11369-11373</pages><volume>58</volume><number>33</number><keywords><keyword>electrocatalysis</keyword><keyword>graphene</keyword><keyword>heterocycles</keyword><keyword>linearconjugatedpolymer</keyword><keyword>oxygenreductionreaction</keyword></keywords><dates><year>2019</year><pub-dates><date>2019/08/12</date></pub-dates></dates><publisher>JohnWiley&Sons,Ltd</publisher><isbn>1433-7851</isbn><work-type>/10.1002/anie.201905468</work-type><urls><related-urls><url>/10.1002/anie.201905468</url></related-urls></urls><electronic-resource-num>/10.1002/anie.201905468</electronic-resource-num><access-date>2021/03/17</access-date></record></Cite></EndNote>[62]等研究人员,在还原石墨烯上聚合不同的单体,生成线性聚合物,在这些聚合物中,吡啶和噻吩分子与氧化石墨烯共价连接形成的材料(P-T)具有显著的氧还原催化性能,在0.1MKOH溶液中,半波电位为0.79V(vsRHE),优异的电化学稳定性。如图1-5所示。图1-5:材料结构与催化性能ADDINEN.CITE<EndNote><Cite><Author>Long</Author><Year>2019</Year><RecNum>64</RecNum><DisplayText><styleface="superscript">[62]</style></DisplayText><record><rec-number>64</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615998817">64</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Long,Xiaojing</author><author>Li,Daohao</author><author>Wang,Binbin</author><author>Jiang,Zhenjie</author><author>Xu,Wenjia</author><author>Wang,Bingbing</author><author>Yang,Dongjiang</author><author>Xia,Yanzhi</author></authors></contributors><titles><title>HeterocyclizationStrategyforConstructionofLinearConjugatedPolymers:EfficientMetal-FreeElectrocatalystsforOxygenReduction</title><secondary-title>AngewandteChemieInternationalEdition</secondary-title></titles><periodical><full-title>AngewandteChemieInternationalEdition</full-title></periodical><pages>11369-11373</pages><volume>58</volume><number>33</number><keywords><keyword>electrocatalysis</keyword><keyword>graphene</keyword><keyword>heterocycles</keyword><keyword>linearconjugatedpolymer</keyword><keyword>oxygenreductionreaction</keyword></keywords><dates><year>2019</year><pub-dates><date>2019/08/12</date></pub-dates></dates><publisher>JohnWiley&Sons,Ltd</publisher><isbn>1433-7851</isbn><work-type>/10.1002/anie.201905468</work-type><urls><related-urls><url>/10.1002/anie.201905468</url></related-urls></urls><electronic-resource-num>/10.1002/anie.201905468</electronic-resource-num><access-date>2021/03/17</access-date></record></Cite></EndNote>[62]Figure1-5.MaterialstructureandcatalyticperformanceADDINEN.CITE<EndNote><Cite><Author>Long</Author><Year>2019</Year><RecNum>64</RecNum><DisplayText><styleface="superscript">[62]</style></DisplayText><record><rec-number>64</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615998817">64</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Long,Xiaojing</author><author>Li,Daohao</author><author>Wang,Binbin</author><author>Jiang,Zhenjie</author><author>Xu,Wenjia</author><author>Wang,Bingbing</author><author>Yang,Dongjiang</author><author>Xia,Yanzhi</author></authors></contributors><titles><title>HeterocyclizationStrategyforConstructionofLinearConjugatedPolymers:EfficientMetal-FreeElectrocatalystsforOxygenReduction</title><secondary-title>AngewandteChemieInternationalEdition</secondary-title></titles><periodical><full-title>AngewandteChemieInternationalEdition</full-title></periodical><pages>11369-11373</pages><volume>58</volume><number>33</number><keywords><keyword>electrocatalysis</keyword><keyword>graphene</keyword><keyword>heterocycles</keyword><keyword>linearconjugatedpolymer</keyword><keyword>oxygenreductionreaction</keyword></keywords><dates><year>2019</year><pub-dates><date>2019/08/12</date></pub-dates></dates><publisher>JohnWiley&Sons,Ltd</publisher><isbn>1433-7851</isbn><work-type>/10.1002/anie.201905468</work-type><urls><related-urls><url>/10.1002/anie.201905468</url></related-urls></urls><electronic-resource-num>/10.1002/anie.201905468</electronic-resource-num><access-date>2021/03/17</access-date></record></Cite></EndNote>[62]JosephT.Hupp团队ADDINEN.CITE<EndNote><Cite><Author>Goswami</Author><Year>2018</Year><RecNum>113</RecNum><DisplayText><styleface="superscript">[59]</style></DisplayText><record><rec-number>113</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1616076105">113</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Goswami,Subhadip</author><author>Ray,Debmalya</author><author>Otake,Ken-ichi</author><author>Kung,Chung-Wei</author><author>Garibay,SergioJ.</author><author>Islamoglu,Timur</author><author>Atilgan,Ahmet</author><author>Cui,Yuexing</author><author>Cramer,ChristopherJ.</author><author>Farha,OmarK.</author><author>Hupp,JosephT.</author></authors></contributors><titles><title>Aporous,electricallyconductivehexa-zirconium(iv)metal–organicframework</title><secondary-title>ChemicalScience</secondary-title></titles><periodical><full-title>ChemicalScience</full-title></periodical><pages>4477-4482</pages><volume>9</volume><number>19</number><dates><year>2018</year></dates><publisher>TheRoyalSocietyofChemistry</publisher><isbn>2041-6520</isbn><work-type>10.1039/C8SC00961A</work-type><urls><related-urls><url>/10.1039/C8SC00961A</url></related-urls></urls><electronic-resource-num>10.1039/C8SC00961A</electronic-resource-num></record></Cite></EndNote>[59],将MOFs材料与C60组装,使C60球状体嵌入到金属有机框架内,通过金属框架与C60之间形成供-受电子之间的关系,使材料达到整体导电的目标,实验表明C60填充了MOFs材料60%的孔穴结构,使不能导电的MOFs材料,导电率增加到10−3S·cm−1。材料结构如图1-6所示。图1-6:材料结构ADDINEN.CITE<EndNote><Cite><Author>Goswami</Author><Year>2018</Year><RecNum>113</RecNum><DisplayText><styleface="superscript">[59]</style></DisplayText><record><rec-number>113</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1616076105">113</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Goswami,Subhadip</author><author>Ray,Debmalya</author><author>Otake,Ken-ichi</author><author>Kung,Chung-Wei</author><author>Garibay,SergioJ.</author><author>Islamoglu,Timur</author><author>Atilgan,Ahmet</author><author>Cui,Yuexing</author><author>Cramer,ChristopherJ.</author><author>Farha,OmarK.</author><author>Hupp,JosephT.</author></authors></contributors><titles><title>Aporous,electricallyconductivehexa-zirconium(iv)metal–organicframework</title><secondary-title>ChemicalScience</secondary-title></titles><periodical><full-title>ChemicalScience</full-title></periodical><pages>4477-4482</pages><volume>9</volume><number>19</number><dates><year>2018</year></dates><publisher>TheRoyalSocietyofChemistry</publisher><isbn>2041-6520</isbn><work-type>10.1039/C8SC00961A</work-type><urls><related-urls><url>/10.1039/C8SC00961A</url></related-urls></urls><electronic-resource-num>10.1039/C8SC00961A</electronic-resource-num></record></Cite></EndNote>[59]Figure1-6.MaterialstructureADDINEN.CITE<EndNote><Cite><Author>Goswami</Author><Year>2018</Year><RecNum>113</RecNum><DisplayText><styleface="superscript">[59]</style></DisplayText><record><rec-number>113</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1616076105">113</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Goswami,Subhadip</author><author>Ray,Debmalya</author><author>Otake,Ken-ichi</author><author>Kung,Chung-Wei</author><author>Garibay,SergioJ.</author><author>Islamoglu,Timur</author><author>Atilgan,Ahmet</author><author>Cui,Yuexing</author><author>Cramer,ChristopherJ.</author><author>Farha,OmarK.</author><author>Hupp,JosephT.</author></authors></contributors><titles><title>Aporous,electricallyconductivehexa-zirconium(iv)metal–organicframework</title><secondary-title>ChemicalScience</secondary-title></titles><periodical><full-title>ChemicalScience</full-title></periodical><pages>4477-4482</pages><volume>9</volume><number>19</number><dates><year>2018</year></dates><publisher>TheRoyalSocietyofChemistry</publisher><isbn>2041-6520</isbn><work-type>10.1039/C8SC00961A</work-type><urls><related-urls><url>/10.1039/C8SC00961A</url></related-urls></urls><electronic-resource-num>10.1039/C8SC00961A</electronic-resource-num></record></Cite></EndNote>[59]人们还采用电聚合的方法,在电极表面形成理想的MOFs材料,可以控制电压、溶剂、表面活性剂、温度等因素,从而控制合成材料的厚度,材料越薄,电子传输路径越短,越容易实现材料的导电,并且材料表面更多的活性位点暴露出来,可以提高材料的催化活性ADDINEN.CITEADDINEN.CITE.DATA[69-71],合成示意图如图1-7。赵申龙等ADDINEN.CITE<EndNote><Cite><Author>Zhao</Author><Year>2016</Year><RecNum>76</RecNum><DisplayText><styleface="superscript">[72]</style></DisplayText><record><rec-number>76</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615999998">76</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhao,Shenlong</author><author>Wang,Yun</author><author>Dong,Juncai</author><author>He,Chun-Ting</author><author>Yin,Huajie</author><author>An,Pengfei</author><author>Zhao,Kun</author><author>Zhang,Xiaofei</author><author>Gao,Chao</author><author>Zhang,Lijuan</author><author>Lv,Jiawei</author><author>Wang,Jinxin</author><author>Zhang,Jianqi</author><author>Khattak,AbdulMuqsit</author><author>Khan,NiazAli</author><author>Wei,Zhixiang</author><author>Zhang,Jing</author><author>Liu,Shaoqin</author><author>Zhao,Huijun</author><author>Tang,Zhiyong</author></authors></contributors><titles><title>Ultrathinmetal–organicframeworknanosheetsforelectrocatalyticoxygenevolution</title><secondary-title>NatureEnergy</secondary-title></titles><periodical><full-title>NatureEnergy</full-title></periodical><pages>16184</pages><volume>1</volume><number>12</number><dates><year>2016</year><pub-dates><date>2016/11/28</date></pub-dates></dates><isbn>2058-7546</isbn><urls><related-urls><url>/10.1038/nenergy.2016.184</url></related-urls></urls><electronic-resource-num>10.1038/nenergy.2016.184</electronic-resource-num></record></Cite></EndNote>[72]通过电聚合的方法,在玻碳电极和铜片上合成超薄的Ni-Co双金属MOFs催化剂,具有很好的导电性,在碱性条件下,该材料表现出很好的氧析出催化性能,使用玻璃碳电极上做载体,在其上合成的超薄镍双金属-有机骨架纳米片,需要250mV的过电位达到10mA·cm-2的电流密度。当MOF纳米片沉积到泡沫铜上时,过电位降至189mV。分子结构如图1-8所示。电聚合过程中,对合成条件要求比较苛刻,材料合成过程中,厚度难以控制。图1-7:电聚合方法示意图ADDINEN.CITE<EndNote><Cite><Author>daSilva</Author><Year>2016</Year><RecNum>112</RecNum><DisplayText><styleface="superscript">[73]</style></DisplayText><record><rec-number>112</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1616067236">112</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>daSilva,GilvaldoG.</author><author>Silva,CecíliaS.</author><author>Ribeiro,RogérioT.</author><author>Ronconi,CéliaM.</author><author>Barros,BráulioS.</author><author>Neves,JorgeL.</author><author>Júnior,SeverinoAlves</author></authors></contributors><titles><title>Sonoelectrochemicalsynthesisofmetal-organicframeworks</title><secondary-title>SyntheticMetals</secondary-title></titles><periodical><full-title>SyntheticMetals</full-title></periodical><pages>369-373</pages><volume>220</volume><keywords><keyword>HKUST-1</keyword><keyword>Cu-BTC</keyword><keyword>Sonoelectrochemical</keyword></keywords><dates><year>2016</year><pub-dates><date>2016/10/01/</date></pub-dates></dates><isbn>0379-6779</isbn><urls><related-urls><url>/science/article/pii/S0379677916302272</url></related-urls></urls><electronic-resource-num>/10.1016/j.synthmet.2016.07.003</electronic-resource-num></record></Cite></EndNote>[73]Figure1-7.SchematicdiagramofelectropolymerizationmethodADDINEN.CITE<EndNote><Cite><Author>daSilva</Author><Year>2016</Year><RecNum>112</RecNum><DisplayText><styleface="superscript">[73]</style></DisplayText><record><rec-number>112</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1616067236">112</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>daSilva,GilvaldoG.</author><author>Silva,CecíliaS.</author><author>Ribeiro,RogérioT.</author><author>Ronconi,CéliaM.</author><author>Barros,BráulioS.</author><author>Neves,JorgeL.</author><author>Júnior,SeverinoAlves</author></authors></contributors><titles><title>Sonoelectrochemicalsynthesisofmetal-organicframeworks</title><secondary-title>SyntheticMetals</secondary-title></titles><periodical><full-title>SyntheticMetals</full-title></periodical><pages>369-373</pages><volume>220</volume><keywords><keyword>HKUST-1</keyword><keyword>Cu-BTC</keyword><keyword>Sonoelectrochemical</keyword></keywords><dates><year>2016</year><pub-dates><date>2016/10/01/</date></pub-dates></dates><isbn>0379-6779</isbn><urls><related-urls><url>/science/article/pii/S0379677916302272</url></related-urls></urls><electronic-resource-num>/10.1016/j.synthmet.2016.07.003</electronic-resource-num></record></Cite></EndNote>[73]图1-8:材料结构与催化性能ADDINEN.CITE<EndNote><Cite><Author>Zhao</Author><Year>2016</Year><RecNum>76</RecNum><DisplayText><styleface="superscript">[72]</style></DisplayText><record><rec-number>76</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615999998">76</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhao,Shenlong</author><author>Wang,Yun</author><author>Dong,Juncai</author><author>He,Chun-Ting</author><author>Yin,Huajie</author><author>An,Pengfei</author><author>Zhao,Kun</author><author>Zhang,Xiaofei</author><author>Gao,Chao</author><author>Zhang,Lijuan</author><author>Lv,Jiawei</author><author>Wang,Jinxin</author><author>Zhang,Jianqi</author><author>Khattak,AbdulMuqsit</author><author>Khan,NiazAli</author><author>Wei,Zhixiang</author><author>Zhang,Jing</author><author>Liu,Shaoqin</author><author>Zhao,Huijun</author><author>Tang,Zhiyong</author></authors></contributors><titles><title>Ultrathinmetal–organicframeworknanosheetsforelectrocatalyticoxygenevolution</title><secondary-title>NatureEnergy</secondary-title></titles><periodical><full-title>NatureEnergy</full-title></periodical><pages>16184</pages><volume>1</volume><number>12</number><dates><year>2016</year><pub-dates><date>2016/11/28</date></pub-dates></dates><isbn>2058-7546</isbn><urls><related-urls><url>/10.1038/nenergy.2016.184</url></related-urls></urls><electronic-resource-num>10.1038/nenergy.2016.184</electronic-resource-num></record></Cite></EndNote>[72]Figure1-8.MaterialstructureandcatalyticperformanceADDINEN.CITE<EndNote><Cite><Author>Zhao</Author><Year>2016</Year><RecNum>76</RecNum><DisplayText><styleface="superscript">[72]</style></DisplayText><record><rec-number>76</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615999998">76</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhao,Shenlong</author><author>Wang,Yun</author><author>Dong,Juncai</author><author>He,Chun-Ting</author><author>Yin,Huajie</author><author>An,Pengfei</author><author>Zhao,Kun</author><author>Zhang,Xiaofei</author><author>Gao,Chao</author><author>Zhang,Lijuan</author><author>Lv,Jiawei</author><author>Wang,Jinxin</author><author>Zhang,Jianqi</author><author>Khattak,AbdulMuqsit</author><author>Khan,NiazAli</author><author>Wei,Zhixiang</author><author>Zhang,Jing</author><author>Liu,Shaoqin</author><author>Zhao,Huijun</author><author>Tang,Zhiyong</author></authors></contributors><titles><title>Ultrathinmetal–organicframeworknanosheetsforelectrocatalyticoxygenevolution</title><secondary-title>NatureEnergy</secondary-title></titles><periodical><full-title>NatureEnergy</full-title></periodical><pages>16184</pages><volume>1</volume><number>12</number><dates><year>2016</year><pub-dates><date>2016/11/28</date></pub-dates></dates><isbn>2058-7546</isbn><urls><related-urls><url>/10.1038/nenergy.2016.184</url></related-urls></urls><electronic-resource-num>10.1038/nenergy.2016.184</electronic-resource-num></record></Cite></EndNote>[72]研究人员会通过配体和金属节点的选择设计,合成具有导电能力的聚合物,其中多金属氧酸盐金属有机框架(PMOF)是一类导电聚合物,通过选择多电子的金属氧酸根团簇作为节点,选择合适的配体,形成规整的有序的多孔结构,金属氧酸根团簇作为电子供体,配体作为电子受体,实现材料内电子的传输,实现材料的导电。2018年,王毅荣ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2018</Year><RecNum>70</RecNum><DisplayText><styleface="superscript">[58]</style></DisplayText><record><rec-number>70</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615999381">70</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Yi-Rong</author><author>Huang,Qing</author><author>He,Chun-Ting</author><author>Chen,Yifa</author><author>Liu,Jiang</author><author>Shen,Feng-Cui</author><author>Lan,Ya-Qian</author></authors></contributors><titles><title>Orientedelectrontransmissioninpolyoxometalate-metalloporphyrinorganicframeworkforhighlyselectiveelectroreductionofCO2</title><secondary-title>NatureCommunications</secondary-title></titles><periodical><full-title>NatureCommunications</full-title></periodical><pages>4466</pages><volume>9</volume><number>1</number><dates><year>2018</year><pub-dates><date>2018/10/26</date></pub-dates></dates><isbn>2041-1723</isbn><urls><related-urls><url>/10.1038/s41467-018-06938-z</url></related-urls></urls><electronic-resource-num>10.1038/s41467-018-06938-z</electronic-resource-num></record></Cite></EndNote>[58]等将金属多氧酸根团簇与卟啉合成规整有序的金属多氧酸根团簇-卟啉框架,具有良好的导电能力,对CO2的还原具有很好的选择催化作用。目前这类材料的研究已经有很多的成果,有很大的应用前景,材料结构和性能如图1-9所示。图1-9:材料结构与催化性能ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2018</Year><RecNum>70</RecNum><DisplayText><styleface="superscript">[58]</style></DisplayText><record><rec-number>70</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615999381">70</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Yi-Rong</author><author>Huang,Qing</author><author>He,Chun-Ting</author><author>Chen,Yifa</author><author>Liu,Jiang</author><author>Shen,Feng-Cui</author><author>Lan,Ya-Qian</author></authors></contributors><titles><title>Orientedelectrontransmissioninpolyoxometalate-metalloporphyrinorganicframeworkforhighlyselectiveelectroreductionofCO2</title><secondary-title>NatureCommunications</secondary-title></titles><periodical><full-title>NatureCommunications</full-title></periodical><pages>4466</pages><volume>9</volume><number>1</number><dates><year>2018</year><pub-dates><date>2018/10/26</date></pub-dates></dates><isbn>2041-1723</isbn><urls><related-urls><url>/10.1038/s41467-018-06938-z</url></related-urls></urls><electronic-resource-num>10.1038/s41467-018-06938-z</electronic-resource-num></record></Cite></EndNote>[58]Figure1-9.MaterialstructureandcatalyticperformanceADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2018</Year><RecNum>70</RecNum><DisplayText><styleface="superscript">[58]</style></DisplayText><record><rec-number>70</rec-number><foreign-keys><keyapp="EN"db-id="xwr2asv2pdp5vdevpt5ptax9watwrtspeex0"timestamp="1615999381">70</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Yi-Rong</author><author>Huang,Qing</author><author>He,Chun-Ting</author><author>Chen,Yifa</author><author>Liu,Jiang</author><author>Shen,Feng-Cui</author><author>Lan,Ya-Qian</author></authors></contributors><titles><title>Orientedelectrontransmissioninpolyoxometalate-metalloporphyrinorganicframeworkforhighlyselectiveelectroreductionofCO2</title><secondary-title>NatureCommunications</secondary-title></titles><periodical><full-title>NatureCommunications</full-title></periodical><pages>4466</pages><volume>9</volume><number>1</number><dates><year>2018</year><pub-dates><date>2018/10/26</date></pub-dates></dates><isbn>2041-1723</isbn><urls><related-urls><url>/10.1038/s41467-018-06938-z</url></related-urls></urls><electronic-resource-num>10.1038/s41467-018-06938-z</electronic-resource-num></record></Cite></EndNote>[58]同时也有研究者通过对一些常规材料进行改进,使原本不能导电或者导电性很差,需要高温碳化才能用作电催化材料,能够不用高温碳化而具有良好的催化性能。2014年,Talin等人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中学教育教学改革制度
- 交通肇事逃逸处理制度
- 2026年环境保护知识环境监测与治理技术模拟题
- 2026年京东技术面试题及答案详解
- 2025年企业产品水足迹标签申请代理合同
- 2025年管辖权异议申请书(被告提交)
- 《JBT 14674-2024风力发电机组 变桨齿轮箱》专题研究报告
- 检验科实验室废水的处理制度及流程
- 2025年三台县幼儿园教师招教考试备考题库含答案解析(必刷)
- 2025年黎城县招教考试备考题库带答案解析(必刷)
- 人教版(2024)七年级上册数学期末综合检测试卷 3套(含答案)
- 研发资料规范管理制度(3篇)
- GB/T 16770.1-2025整体硬质合金直柄立铣刀第1部分:型式与尺寸
- 工业产品销售单位质量安全日管控周排查月调度检查记录表
- 2025年风险管理自查报告
- 2026年中国煤炭资源行业投资前景分析研究报告
- 项目成本控制动态监测表模板
- DBJ46-074-2025 海南省市政道路沥青路面建设技术标准
- 幼儿园小班语言《大一岁了》课件
- GB/T 14071-2025林木品种审定规范
- 移风易俗问答题目及答案
评论
0/150
提交评论