版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省晋中市祁县中学高二数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国景德镇陶瓷世界闻名,其中青花瓷最受大家的喜爱,如图1这个精美的青花瓷花瓶,它的颈部(图2)外形上下对称,基本可看作是离心率为的双曲线的一部分绕其虚轴所在直线旋转所形成的曲面,若该颈部中最细处直径为16厘米,瓶口直径为20厘米,则颈部高为()A.10 B.20C.30 D.402.已知中心在坐标原点,焦点在轴上的双曲线的离心率为,则其渐近线方程为()A. B.C. D.3.在等差数列中,,,则数列的公差为()A.1 B.2C.3 D.44.公比为的等比数列,其前项和为,前项积为,满足,.则下列结论正确的是()A.的最大值为B.C.最大值为D.5.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.6.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.587.已知等比数列{an}中,,,则()A. B.1C. D.48.已知,,则下列结论一定成立的是()A. B.C. D.9.将函数图象上所有点横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.10.向量,向量,若,则实数()A. B.1C. D.11.执行如图所示的程序框图,输出的值为()A. B.C. D.12.设命题,则为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则__________.14.在空间直角坐标系中,若三点、、满足,则实数的值为__________.15.已知直线与平行,则实数的值为_____________.16.已知数列是等差数列,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点(1)求证:平面ABCD;(2)求直线AB与平面PBC所成角的正弦值18.(12分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg19.(12分)为深入学习贯彻总书记在党史学习教育动员大会上的重要讲话精神和中共中央有关决策部署,推动教育系统围绕建党百年重大主题,深化中学在校师生理想信念教育,引导师生学史明理、学史增信、学史崇德、学史力行,以昂扬的状态迎接中国共产党建党周年,哈工大附中高二年级组织本年级同学开展了一场党史知识竞赛.为了解本次知识竞赛的整体情况,随机抽取了名学生的成绩作为样本进行统计,得到如图所示的频率分布直方图(1)求直方图中a的值,并求该次知识竞赛成绩的第50百分位数(精确到0.1);(2)已知该样本分数在的学生中,男生占,女生占现从该样本分数在的学生中随机抽出人,求至少有人是女生的概率.20.(12分)如图,在四棱锥中,侧面底面,是以为斜边的等腰直角三角形,,,,点E为的中点.(1)证明:平面;(2)求二面角的余弦值.21.(12分)如图,在四棱锥中,底面,,,,,为上一点,且.请用空间向量知识解答下列问题:(1)求证:平面;(2)求平面与平面夹角的大小.22.(10分)已知椭圆的左、右焦点分别为,若焦距为4,点P是椭圆上与左、右顶点不重合的点,且的面积最大值.(1)求椭圆的方程;(2)过点的直线交椭圆于点、,且满足(为坐标原点),求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设双曲线方程为,根据已知条件可得的值,由可得双曲线的方程,再将代入方程可得的值,即可求解.【详解】因为双曲线焦点在轴上,设双曲线方程为由双曲线的性质可知:该颈部中最细处直径为实轴长,所以,可得,因为离心率为,即,可得,所以,所以双曲线的方程为:,因瓶口直径为20厘米,根据对称性可知颈部最右点横坐标为,将代入双曲线可得,解得:,所以颈部高为,故选:B2、A【解析】根据离心率求出的值,再根据渐近线方程求解即可.【详解】因双曲线焦点在轴上,所以渐近线方程为:,又因为双曲线离心率为,且,所以,解得,即渐近线方程为:.故选:A.3、B【解析】将已知条件转化为的形式,由此求得.【详解】在等差数列中,设公差为d,由,,得,解得.故选:B4、A【解析】根据已知条件,判断出,即可判断选项D,再根据等比数列的性质,判断,,由此判断出选项A,B,C.【详解】根据题意,等比数列满足条件,,,若,则,则,,则,这与已知条件矛盾,所以不符合题意,故选项D错误;因为,,,所以,,,则,,数列前2021项都大于1,从第2022项开始都小于1,因此是数列中的最大值,故选项A正确由等比数列的性质,,故选项B不正确;而,由以上分析可知其无最大值,故C错误;故选:A5、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A6、B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.7、D【解析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D8、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.9、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A10、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.11、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.12、D【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题是全称量词命题,所以其否定是存在量词命题,即,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【详解】解:因为在中,,,,所以由余弦定理可得,所以,即,则故答案为:14、##【解析】分析可知,结合空间向量数量积的坐标运算可求得结果.【详解】由已知可得,,因为,则,即,解得.故答案为:.15、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或16、8【解析】利用计算可得答案.【详解】设等差数列的公差为,故答案为:8.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)题中易得,,利用勾股定理可得,从而可证得线面垂直;(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,用空间向量法求线面角的正弦值【详解】(1)证明:在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点,,,,,,,平面ABCD(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,0,,,0,,,,,,设平面PBC的法向量y,,则,取,得1,,设直线AB与平面PBC所成角,直线AB与平面PBC所成角的正弦值为:【点睛】本题考查线面垂直的证明,考查空间向量法求线面角.空间角的求法一般都是建立空间直角坐标系,用空间向量法求得空间角18、(1),,,证明见解析(2)至少到2026年的年底,企业的剩余资金会超过21千万元【解析】(1)由题意可知,,,,再结合等比数列的性质,即可求解(2)由(1)知,,则,令,再结合对数函数运算,即可求解【小问1详解】依题意知,,,,,所以,又,所以是首项为3,公比为1.5的等比数列.【小问2详解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企业的剩余资金会超过21千万元19、(1)(2)【解析】(1)利用频率和为1求出a;利用百分位数的定义求出知识竞赛成绩的第50百分位数;(2)先利用分层抽样求出男、女生的人数,利用古典概型求概率.【小问1详解】,由,解得设该次知识竞赛成绩的第50百分位数为x,则,解得:.即该次知识竞赛成绩的第50百分位数为【小问2详解】由频率分布直方图可知:分数在)的人数有人,所以这人中,女生有人,记为、,男生有人,记为、、、从这人中随机选取人,基本事件为:、、、、、、、、、、、、、、,共种不同取法;则至少有人是女生的基本事件为、、、、、、、、,共种不同取法,则所求的概率为20、(1)见解析;(2)【解析】(1)用线线平行证明线面平行,∴在平面PCD内作BE的平行线即可;(2)求二面角的大小,可以用空间向量进行求解,根据已知条件,以AD中点O为原点,OB,AD,OP分别为x、y、z轴建立坐标系﹒【小问1详解】如图,取PD中点F,连接EF,FC﹒∵E是AP中点,∴EFAD,由题知BCAD,∴BCEF,∴BCFE是平行四边形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小问2详解】取AD中点O,连接OP,OB,∵是以为斜边等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD两两垂直,故以O原点,OB、OD、OP分别为x、y、z轴,建立空间直角坐标系Oxyz,如图:设|BC|=1,则B(1,0,0),D(0,1,0),E(0,),P(0,0,1),则,设平面BED的法向量为,平面PBD的法向量为则,取,,取设二面角的大小为θ,则cosθ=﹒21、(1)证明见解析(2)【解析】(1)以为原点,、、分别为轴、轴、轴建立空间直角坐标系,证明出,,结合线面垂直的判定定理可证得结论成立;(2)利用空间向量法可求得平面与平面夹角的大小.【小问1详解】证明:底面,,故以为原点,、、分别为轴、轴、轴建立如图所示的空间直角坐标系,则、、、、、,所以,,,,则,,即,,又,所以,平面.【小问2详解】解:知,,,设平面的法向量为,则,,即,令,可得,设平面的法向量为,由,,即,令,可得,,因此,平面与平面夹角的大小为.22、(1)(2)或【解析】(1)根据焦距求出,利用面积最大值,得到求出,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《JBT 14542-2024 无刷双通道旋转变压器技术规范》专题研究报告
- 检验科生物安全防护管理制度
- 环境执法科室年度环保查处工作总结
- 2024年福贡县招教考试备考题库带答案解析(夺冠)
- 2025年钦州幼儿师范高等专科学校马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2025年江西电力职业技术学院单招职业技能考试模拟测试卷带答案解析
- 2025年宁夏医科大学马克思主义基本原理概论期末考试模拟题附答案解析(必刷)
- 2026年大连职业技术学院单招职业倾向性考试题库附答案解析
- 2025年贵州食品工程职业学院单招综合素质考试题库附答案解析
- 2025年洛川县招教考试备考题库带答案解析(必刷)
- 化妆合同模板 简易模板
- 深沟球轴承尺寸规格对照表
- 古树移植施工方案
- 五年级上册道德与法治第10课-传统美德-源远流长-教学反思
- 《看图找关系》(教学设计)-2024-2025学年六年级上册数学北师大版
- DZ∕T 0374-2021 绿色地质勘查工作规范(正式版)
- 《浙江省安装工程预算定额》(2010版)
- 心理与教育测量课件
- 化工企业工艺报警培训课件
- 2024年全年日历表带农历(A4可编辑可直接打印)预留备注位置 精心整理
- 长沙市财政评审中心 2023年第一期材料价格手册签章版
评论
0/150
提交评论