外文翻译-水平切片分析法_第1页
外文翻译-水平切片分析法_第2页
外文翻译-水平切片分析法_第3页
外文翻译-水平切片分析法_第4页
外文翻译-水平切片分析法_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

英文原文Shahgholi,M.,Fakher,A.&Jones,C.J.F.P.(2001).Geotechnique51,No.10,881-885TECHNICALNOTEHorizontalslicemethodofanalysisM.SHAHGHOLI,Ã A.FAKHERÃ andC.J.F.P.JONES{KEYWORDS:design;reinforcedsoils;theoreticalanalysis.INTRODUCTIONTherearenumerousmethodsavailableforthestabilityanalysisofslopes.Mostofthesemaybecategorisedaslimitequilibriummethods\l"5#5"(Fang&Mikroudis,1991).Thegeneralapproachistoassumeafailuresurfaceanddeterminethefactorofsafetyofasoilwedgeagainstslidingusingequilibriumequations.ThebasicassumptionisthatCoulomb'sfailurecriterionissatisfiedalongtheassumedfailuresurface,andthefactorofsafetyisoftendefinedastheratioofavailableshearresistancetotherequiredshearresistance.Limitequilibriummethodscanbedividedintotwomaingroups.Thefirstgroupconsiderstheequilibriumofthewholefailingmass,assumingafailuresurface.Thesemethodsaresuitablefortheanalysisofhomogeneoussoilsandspecificfailuresurfaces.Culmann'smethodisanexampleofthisgroup\l"5#5"(Taylor,1984).Inthesecondgroup,aslidingwedgeor`active'massisdividedintoanumberofverticalslices,andtheequilibriumofeachindividualsliceisconsidered.Thisprocedure,knownasthemethodofslices,hasbeenadaptedtoanytypeoffailuresurfaceandsoil.Fig.\l"1#1"1illustratesthemethodandtheforcesthatactonatypicalslice.Alistofthegoverningequationsandunknownparametersinherenttotheverticalslicemethodisshownin\l"2#2"Table1.Itcanbeseenthatthenumberofunknownparametersisgreaterthanthenumberofequations,andaccord-inglyitisnecessarytomakefurthersimplifyingassumptionstoreducethenumberofunknowns.Variousauthorshavepresentedverticalslicemethodsofanalysis.Theproceduresdifferprincipallyintheequilibriumrequirementsthattheysatisfyandthemannerinwhichtheyhandleintersliceforces,whicharenormallydealtwithintermsofverticalandhorizontalcomponents\l"5#5"(Sharma,1991).Thecharacteristicsandtheassumptionsinvolvedinsomeofthesemethodsareillustratedin\l"2#2"Table2.Inadditiontoconventionalanalysis,limitequilibriummeth-odscanbeusedforthepseudo-staticanalysisofslopesagainstseismicloadsandfortheanalysisofreinforcedsoil.InthecaseofseismicslopeanalysistheMononobe-Okabemethodisoftenused\l"5#5"(Mononobe,1926;Okabe,1926).TheMononobe-Okabeanalysisbecanalsousedasthebasisfortheseismicanalysisofreinforcedsoilstructures\l"5#5"(Richardson&Lee,1975;\l"5#5"Bathurst&Cai,1995).Intheseanalyticalmethodsaplanarfailuresurfaceisassumed,andadynamicearthpressurecomponentisaddedtothestaticearthpressureforcestodeterminetherequiredreinforcementforce.Intheanalysisofthestabilityofreinforcedsoilslopesthetensionforcesinthereinforcingelementsneedtobeconsidered.Owingtothemethodofconstructionandtheusualorientationofthereinforcement,theseforcesareusuallyassumedtoacthorizontally.Thelimitingforcedevelopedinanyreinforcingelement, tj,isthelesseroftherupturestrengthofthereinforce-mentandthepull-outresistance(Fig.\l"2#2"2).ItcanbeseenfromFig.\l"2#2"2thattheorientationofthereinforcementhasadirectinfluenceontheintersliceforces,andthatthereinforcementtensionsareadditionalunknownsintheverticalslicemethodofanalysis.Asaresulttheverticalslicemethodisnotparticularlysuitedtotheanalysisofreinforcedsoilslopes.Thedesignofreinforcedslopesinseismicareashasbeenconsideredby\l"5"Bonaparte \l"5"etal. (1986)usingapsuedo-staticlimitequilibriumapproach,inwhichtheinternalstabilitycanbeassessedusingatwo-partwedgemechanism\l"5"(Jewell \l"5"etal.\l"5",1984).ThesameproceduresareusedinJapanbytheJapaneseRailwayTechnicalResearchInstituteandthePublicWorksManuscriptreceived30July2000;revisedmanuscriptaccepted8August2001.Discussiononthispapercloses1May2002,forfurtherdetailsseeinsidebackcover.ÃUniversityofTehran,{UniversityofNewcastle,ResearchInstituteforthedesignofreinforcedsoilwallsandslopes.Astaticequilibriumapproachforthedesignofreinforcedsoilhasalsobeenadoptedby\l"5"Leshchinsky \l"5"etal. (1995),andhasbeenextendedtocovertheseismiccase\l"5"(Ling \l"5"etal.\l"5",1997).Inthelatterapproachtheseismichorizontalforceisconsideredaspseudo-static,andisobtainedthroughaseismiccoefficientthatistakenasapercentageofthedeadloadofthepotentialfailuresoilmassactinghorizontallyatthecentreofgravity.Themethodassumesalog-spiralfailuremechanism,andhasbeendevelopedasacomputerprogram,ReSlope\l"5"(Leshchinsky,1997).HORIZONTALSLICEMETHODOFANALYSISThelimitationsoftheverticalslicemethodfortheanalysisofreinforcedsoilcanberesolvedbytheuseofhorizontalslices,knownasthehorizontalslicemethod(HSM).Inthismethodafailuresurfaceisassumed,andthefailurewedgeisdividedintoanumberofhorizontalslices.TheforcesthatactoneachsliceareshowninFig.\l"3"3.FromFig.\l"3"3itcanbeseenthatnointersliceforcesaregeneratedbythereinforcements.Thefollowingassumptionsaremade:(a)Theverticalstressonanelementinthesoilmassisequaltotheoverburdenpressure.[Overburdenpressureunderseismicloadsisequalto(1+Kv)rh.](b)Thefactorofsafety(FS)isequaltotheratiooftheavailableshearresistancetotherequiredshearresistancealongthefailuresurface.(c)Thefactorofsafetyforallslicesisequal.(d)Thefailuresurfacecanhaveanyarbitraryshape,butitdoesnotpassbelowthetoeoftheslopeorwall.Thusifthefailurewedgeisdividedinto N horizontalslicesthereare4Nunknowns,whichcanbedeterminedby4Nequa-tions,andacompleteformulationispossible,asdetailedin\l"3#3"Table3.Thesolutionofthegeneralformulationofthehorizon-talslicemethodwith4Nunknownsisdifficult,andneedsextensivemathematicaleffort;itisthesubjectoffurtherresearch.However,asimplifiedformulationispresentedheretoshowtheadvantageofthehorizontalslicemethodincompari-sonwithverticalslicemethodsintheanalysisofreinforcedsoilstructures.SIMPLIFIEDFORMULATIONThecompleteformulationcanbesimplifiedifonlyverticalequilibriumisconsideredforindividualslicestogetherwithoverallhorizontalequilibriumforthewholewedge,noaccountbeingtakenofmomentequilibrium.Inthiscase,thenumberofequationsandunknownsisreducedto2N+1\l"3#3"(Table4).Therefore,fromFig.\l"3#3"3:and Siisderivedfromequation\l"3#3"(2)andsubstitutedintoequation(1). NiisderivedasafunctionoftheFSasfollows:AsaresultSicanbederivedasafunctionoftheFSusingequation\l"3#3"(2).HavingdeterminedSiandNi,thevalueofFScanbedeterminedusingequation(3)when∑tjisknownandviceversa.Itcanbeseenfromequation(3)thatdistributionofreinforcementforceshasnoeffecton ∑tj.Ifthecalculatedvalueof Nifromequation\l"3#3"(4)issmallerthanzero,then Niequalszeroand Si=cbi/FSisusedinequation(1)tocalculateVi+1.Notethatverticalintersliceforces(Viand Vi+1)couldbecalculatedbyintegrationofoverburdenpressuresonhorizontalborders.Asanexample,forawallwithahorizontalsoilsurfaceViisequalto(1 Kv)ãhiliandhasaconstantdistributiononanelement.Overburdenpressureincreaseswithincreaseof hi(verticaldistancebetweenanypointandtheexternalborderofsoilmass).Therefore,inthecaseofaverticalwallwithslopingsoilsurface,thedistributionofverticalstressonahorizontalelementistrapezoidal.Thisassumptionmaynotbepreciselytrueforpointsneartothebordersofthesoilmass.However,itisconsideredtobereasonablewhenapplyingthehorizontalslicemethod,andhasbeenacceptedpreviously\l"5#5"(Atkinson,1993).Momentequilibriumisnotconsideredinthesimpli®edformulationofthehorizontalslicemethod,andthisisalimitation.COMPARISONOFTHEHORIZONTALSLICEMETHODWITHRESLOPEThehorizontalslicemethodhasbeenusedtoanalysere-inforcedsoilstructures,andresultsshowcloseagreementwithpublisheddata.Inordertoillustratetheuseofthemethod,theanalysisofatypicalreinforcedsoilwallispresentedandcomparedwiththeresultsproducedbyanestablishedanalyticalcomputerprogram,ReSlope\l"5#5"(Leshchinsky,1997;Ling\l"5#5"etal.\l"5#5",1997).Detailsofthewallaregivenin\l"4#4"Table5andFig.\l"4#4"4.InFig.\l"4#4"4,reinforcementlayers1-m areextendedbeyondthefailureplanede®nedinatiebackanalysis,sothattheirallowabletensilestrengthscanbedeveloped.Ifthepulloutresistanceofthereinforcement,basedupontj-allowableofallmlayers,isgreaterthanrequired,thelengthofthereinforcementscanbetruncated.Ifthepulloutresistanceisinadequatethelengthisincreased.Anumberoffailureplanes, i,areconsideredtoidentifythecriticalcondition.Thevaluesof ∑tjmax determinedusingtheReSlopeprogramcanbecomparedwiththevaluesof ∑tjmax determinedusingthehorizontalslicemethodfordifferentvaluesofKhandö\l"4#4"(Table6).NotethatintheReSlopeprogramtheslipsurfaceisassumedtobeaspiral,andinthehorizontalslicemethoditisassumedtobepolylinear.Thecriticalslipsurfaceisnotnecessarilyidenticalinbothmethods.CONCLUSIONThehorizontalslicemethodovercomesthedifficultiesinherentinadoptingtheverticalslicemethodofanalysisforthedesignofreinforcedsoilstructures.inparticular:(a)Therearenointersliceforcesdevelopedbytheactionofthereinforcement.(b)Differentseismicaccelerationsatdifferentheightsofthesoilstructurescanbemodelled.Theresultsofatrialanalysisofareinforcedsoilstructuresubjectedtoseismicforcesagreecloselywiththeresultsproducedusingalog-spiralassumptionofafailureplane.NOTATIONbi lengthofbaseofslicec cohesionofsoilFSfactorofsafetyh verticaldistancebetweenanypointinsoilmassandexternalbordersofsoilmassHi horizontalintersliceforcehi depthofhorizontalborderofslicesKh horizontalseismiccoef®cientKvverticalseismiccoefficientli lengthofhorizontalborderofslicesm numberofreinforcementlayersN numberofslicesNi normalforceuponbaseofsliceSishearforceuponbaseofslicetj tensileforceofreinforcementWiweightofsliceai angleofbaseofsliceƔ unitweightofsoilɸi angleoffrictionoffillƮf failureshearstressƮr requiredshearstressREFERENCESAtkinson,J.(1993). Anintroductiontothemechanicsofsoilsandfoundations.London:McGraw-Hill.Bathurst,R.J.&Cai,Z.(1995).Psuedo-staticseismicanalysisofgeosyntheticreinforcedsegmentalretainingwalls.GeosyntheticsInt.2,No.5,pp.787±830.Bishop,A.W.(1955).Theuseoftheslipcircleinthestabilityanalysisofearthslopes.GeÂotechnique 5,No.1,7±17.Bonaparte,R.,Schwertmann,G.R.andWilliams,N.D.,(1986).Seismicdesignofslopesreinforcedwithgridsandgeotextiles.Proc.3rdInt.Conf.Geotextiles,Vienna,Fang,H.-Y.&Mikroudis,G.K.(1991).Stabilityofearthslopes.InFoundationengineeringhandbook,2ndedn(ed.H.-Y.Fang),pp.379±409.NewYork:VanNostrandReinhold.Fellenius,W.(1936).Calculationofthestabilityofearthdams. Trans.2ndInt.Cong.LargeDams,Washington4,445±459.Janbu,N.(1954).Applicationofcompositeslipsurfaceforstabilityanalysis.Proc.Eur.Conf.StabilityofEarthSlopes,Stockholm.Janbu,N.,Bjerrum,L.&Kjaernsli,B.(1956).Soilmechanicsappliedtosomeengineeringproblems,NorwegianGeotech.Inst.Pub.No.16,Chs1and2.Jewell,R.A.,Paine,N.&Woods,R.I.(1984).Designmethodsforsteepreinforcedembankments, Proceedingsofsymposiumonpoly-mergridreinforcementincivilengineering,pp.1±12.London:ThomasTelford.Leshchinsky,D.(1997).ReSlope. Geotech.FabricRep. 15,No.1,40±46.Leshchinsky,D.,Ling,H.I.&Hanks,G.(1995).Uni®eddesignapproachtogeosyntheticreinforcedslopesandsegmentalwalls.GeosyntheticsInt.2,No.5,845-881.Ling,H.I.,Leshchinsky,D.&Perry,E.B.(1997).Seismicdesignandperformanceofgeosynthetic-reinforcedsoilstructures. GeÂotechnique47,No.5,933±952.Mononobe,N.(1926).Aninvestigationonverticalearthquakeaccelerationandstructuralvibration. Proc.JapanSoc.Civ.Engrs 10,No.5,pp.1063±1094(inJapanese).Morgenstern,N.R.&Price,V.E.(1965).TheanalysisofthestabilityofgeneralisedslipsurfacesGeÂotechnique 15,No.1,79±93.Okabe,S.(1926).Generaltheoryofearthpressuresandseismicstabilityofretainingwallsanddams. J.Japan.Soc.Civ.Engrs 10,No.6,1277±1288.Richardson,G.N.&Lee,K.L.(1975).Seismicdesignofreinforcedearthwalls. J.Geotech.Engng,ASCE101,No.2,167±188.Sharma,H.D.(1991).Embankmentdams,p.359.NewDelhi:IBH.Spencer,E.(1967).Amethodofanalysisofthestabilityofembankmentsassumingparallelinter-sliceforces. GeÂotechnique 17,No.1,11-26.Taylor,D.W.(1984). Fundamentalsofsoilmechanics.NewYork:Wiley.英文译文水平切片分析法关键字:设计;加筋土;理论分析。引言斜井的稳定性分析有许多种方法。这许多种方法可以被归类为极限平衡法(Fang&Mikroudis,1991)。一般方法是假设一个破坏面,同时用平衡方程确定滑动土楔的稳定系数。一般我们假定先前假设的破坏面满足库仑破坏准则,而且该稳定系数通常被定义为可用抗剪系数与必需抗剪系数的比值。极限平衡法可以被分为主要的两大类。第一类方法考虑整个破坏体的平衡,这一类方法适用于均质土壤和特定破坏面的分析。Culmann方法是这类方法的一个例子(Taylor,1984)。在第二类方法中,一个滑楔或者“活性”物质被分隔成许多纵向切片,同时考虑每一个独立切面的平衡性。这个以切片法命名的过程已经被运用于任何破坏面和土壤。图1显示了这一方法在一个特定切片上的应用。表格1显示了一系列纵向切面所固有的控制方程和未知参数。可见未知参数的数量要多于方程的数量,同时相应地进一步简化假设以减少未知参数的数量是必要的。许多作者都已经对纵向切片分析法作了介绍,这些介绍的主要不同点在于这些分析法所满足的平衡条件和对间力的处理方法各有差异,而这一差异在纵向和横向组件问题的处理中是很正常的(Sharma,1991)。表格2显示了与这些不同方法相关联的特点和假设。优于的通常分析法,极限平衡法可以被用于地震荷载的伪静态分析,也可以被用于加筋土的分析中。Mononobe-Okabe分析法经常用于地震荷载的分析中(Mononobe,1926;Okabe,1926)。Mononobe-Okabe分析法也可以作为加筋土结构的地震荷载分析的基础(Richardson&Lee,1975;Bathurst&Cai,1995)。在加筋土斜坡的分析中,加强元素中的张力应该被考虑在内。由于施工方法和加固的一贯方向的原因,我们通常假设这些张力是在水平方向起作用的。在任意加强元素中形成的限制力tj是加强中的断裂强度和拉电阻中较小的那一个值(图2)。可以从图2看出增援的方向对间力有直接的影响,我们也可以看出在纵向切片分析法中拉筋是额外的未知量。因此垂直切片方法不是特别适合用于加筋土斜坡的分析。Bbnaparte(1986)等人使用伪静态极限平衡法进行了地震地区的边坡加固的设计,在这一方法中用由两部分组成的楔形机制测定了内部稳定性。这一方法也被日本铁路技术和公共事务研究所使用,用于加筋土墙和加筋土斜坡的设计。加筋土的设计中的静平衡方法也已经被Leshchinsky(1995)等人采用,这一方法已经被扩展到地震事件的分析中(Ling等,1997)。在后一种方法中,地震水平力被认为是伪静态的,这一水平力通过一个被认为是潜在的故障土体静载水平重心的百分比的地震系数获得。这一方法假定了一个对数螺旋破坏机制,这一方法已经被发展成一个名为ReSlope(Leshchinsky,1997)的电脑程序。水平切片分析法纵向切片分析法分析加筋土的局限性可以被简称为HSM的水平切片分析法解决。在这一方法中,我们假设了一个破坏面,同时破坏楔面被分割成了许多水平切面。图3显示了作用在每一个切片上的作用力。从图3中我们还可以看出,增援没有形成切片间的间力。以下是我们做出的一系列假设:作用在土体中元素上的立式压力和覆压等同。(在地震负荷下的覆压等于(1+Kv)rh安全系数(FS)等于可用的剪切阻力比沿着破坏面所需的剪切阻力的比值。所有切片的安全系数都相等。破坏面可以有任意的形状,但是他不通过下面的斜坡或墙壁的底部。这样,如果破坏楔面被分割为N个水平切片,就有4N个由4N个方程确定的未知量,那么就如表格3所述,我们有可能得到一个完整的方程。解出有4N未知量的水平切割法的通式是困难的,这需要广泛的数学知识。这正是以后研究的主题。然而,我们在这里展示一个简化的方程,以便显示出在分析加紧土结构时水平切片法优于纵向切片法。简化的方程如果只考虑单个切片的垂直平衡和整个楔形的整体水平平衡,不考虑力矩平衡,完整的方程可以被简化。在这个例子中,方程和未知数的数量被减少到2N+1个(表格4)。因此,从图3中,我们可以得到:Si由方程2得出,将其带入方程1。Ni由以下安全系数的性质得出:所以Si可以用方程2同时考虑安全系数的性质得出。既然已经确定了Si和Ni的值,那么当tj之和的值已知时,安全系数的值就可以由方程3得出,反之亦然。从方程3可以看出,增援力量的分布对tj之和的值没有影响。如果由方程4得出的Ni的值小于零,那么令Ni的值为零,同时在方程1中用Si=cbi计算Vi+1。我们注意到垂直间力(Vi和Vi+1)可以由在水平边界上对覆压积分得到。举个例子说,对于拥有水平土壤表层的墙面来说,Vi和(1+KV)rhili是相等的,而且Vi有一个上常量元素分布。当hi(任一点和土壤块体间的垂直距离)增加时,覆压也随之增长。因此,在坡地土壤表面与垂直墙的例子中,横向元素上的垂直压力是梯形分布的。这个假设对于土壤体边界的点来说也许是不准确的,然而,当使用水平切割法时这一假设被认为是合理的,而且这一假设之前被采纳过(Atkinson,1993)。在这一水平切割法的简化方程中没有考虑力矩平衡,这是这一方法的一个有局限性的地方。水平切割法与Reslope的比较水平切割法被应用于加筋土结构的分析中,实验结果显示出了和已公布的数据的紧密的一致性。为了展示这一方法的应用,一个典型的加筋土壁的分析结果和由一个已建立的分析性电脑程序Reslope(Leshchinsky,1997;Ling等人,1997)得出的结果进行了比较。土墙的详细信息由表格5和图4给出。在图4中,加固层1-m延展到到由回接分析定义的破坏面之外,以便于形成他们所允许的拉伸强度。如果基于所有m层允许的tj值之上的钢筋抗拔力必须要的值大,那么增援的长度可以被截断。如果抗拔力不足,增援的长度就会增长。破坏面数量的描绘量i被认为用来定义临界条件。在Kh取不同值的情况下,由ReSlope程序确定的tjmax之和可以和由水平切割法确定的tjmax之和进行比较(表格6)。我们注意到在ReSlope程序中滑动面被认为是螺旋的,而在水平切割法中滑动面是轴承滚道。在这两种方法中,临界滑动面不必要是相同的。结论水平切割法克服了采用纵向切割分析法设计加紧土结构时的固有缺点。特别地:这里没有由于加固的作用引发的间力。在土壤结构的不同高度上不同的地震加速度可以用模型描述。受地震力的加筋土结构的实验分析结果和采用对数螺线假设的破坏面的研究结果十分一致。注释bi基地切片的长度c土壤凝聚力h任一点和土壤块体外边界间的垂直距离Hi横向间力hi切片的水平边界深度Kh水平地震系数Kv垂直地震系数Li切片的水平边界长度m加固层的数量N切片数量Ni切片上基础力Si剪切力Tj加固力W重量切应力ai切角大小Ɣ重度ɸi摩擦角角度Ʈf负剪切应力Ʈr正剪切应力参考文献Atkinson,J.(1993). Anintroductiontothemechanicsofsoilsandfoundations.London:McGraw-Hill.Bathurst,R.J.&Cai,Z.(1995).Psuedo-staticseismicanalysisofgeosyntheticreinforcedsegmentalretainingwalls.GeosyntheticsInt.2,No.5,pp.787±830.Bishop,A.W.(1955).Theuseoftheslipcircleinthestabilityanalysisofearthslopes.GeÂotechnique 5,No.1,7±17.Bonaparte,R.,Schwertmann,G.R.andWilliams,N.D.,(1986).Seismicdesignofslopesreinforcedwithgridsandgeotextiles.Proc.3rdInt.Conf.Geotextiles,Vienna,Fang,H.-Y.&Mikroudis,G.K.(1991).Stabilityofearthslopes.InFoundationengineeringhandbook,2ndedn(ed.H.-Y.Fang),pp.379±409.NewYork:VanNostrandReinhold.Fellenius,W.(1936).Calculationofthestabilityofearthdams. Trans.2ndInt.Cong.LargeDams,Washington4,445±459.Janbu,N.(1954).Applicationofcompositeslipsurfaceforstabilityanalysis.Proc.Eur.Conf.StabilityofEarthSlopes,Stockholm.Janbu,N.,Bjerrum,L.&Kjaernsli,B.(1956).Soilmechanicsappliedtosomeengineeringproblems,NorwegianGeotech.Inst.Pub.No.16,Chs1and2.Jewell,R.A.,Paine,N.&Woods,R.I.(1984).Designmethodsforsteepreinforcedembankments, Proceedingsofsymposiumonpoly-mergridreinforcementincivilengineering,pp.1±12.London:ThomasTelford.Leshchinsky,D.(1997).ReSlope. Geotech.FabricRep. 15,No.1,40±46.Leshchinsky,D.,Ling,H.I.&Hanks,G.(1995).Uni®eddesignapproachtogeosyntheticreinforcedslopesandsegmentalwalls.GeosyntheticsInt.2,No.5,845-881.Ling,H.I.,Leshchinsky,D.&Perry,E.B.(1997).Seismicdesignandperformanceofgeosynthetic-reinforcedsoilstructures. GeÂotechnique47,No.5,933±952.Mononobe,N.(1926).Aninvestigationonverticalearthquakeaccelerationandstructuralvibration. Proc.JapanSoc.Civ.Engrs 10,No.5,pp.1063±1094(inJapanese).Morgenstern,N.R.&Price,V.E.(1965).TheanalysisofthestabilityofgeneralisedslipsurfacesGeÂotechnique 15,No.1,79±93.Okabe,S.(1926).Generaltheoryofearthpressuresandseismicstabilityofretainingwallsanddams. J.Japan.Soc.Civ.Engrs 10,No.6,1277±1288.Richardson,G.N.&Lee,K.L.(1975).Seismicdesignofreinforcedearthwalls. J.Geotech.Engng,ASCE101,No.2,167±188.Sharma,H.D.(1991).Embankmentdams,p.359.NewDelhi:IBH.Spencer,E.(1967).Amethodofanalysisofthestabilityofembankmentsassumingparallelinter-sliceforces. GeÂotechnique 17,No.1,11-26.Taylor,D.W.(1984). Fundamentalsofsoilmechanics.NewYork:Wiley.基于C8051F单片机直流电动机反馈控制系统的设计与研究基于单片机的嵌入式Web服务器的研究MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究基于模糊控制的电阻钎焊单片机温度控制系统的研制基于MCS-51系列单片机的通用控制模块的研究基于单片机实现的供暖系统最佳启停自校正(STR)调节器单片机控制的二级倒立摆系统的研究基于增强型51系列单片机的TCP/IP协议栈的实现基于单片机的蓄电池自动监测系统基于32位嵌入式单片机系统的图像采集与处理技术的研究基于单片机的作物营养诊断专家系统的研究基于单片机的交流伺服电机运动控制系统研究与开发基于单片机的泵管内壁硬度测试仪的研制基于单片机的自动找平控制系统研究基于C8051F040单片机的嵌入式系统开发基于单片机的液压动力系统状态监测仪开发模糊Smith智能控制方法的研究及其单片机实现一种基于单片机的轴快流CO〈,2〉激光器的手持控制面板的研制基于双单片机冲床数控系统的研究基于CYGNAL单片机的在线间歇式浊度仪的研制基于单片机的喷油泵试验台控制器的研制基于单片机的软起动器的研究和设计基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究基于单片机的机电产品控制系统开发基于PIC单片机的智能手机充电器基于单片机的实时内核设计及其应用研究基于单片机的远程抄表系统的设计与研究基于单片机的烟气二氧化硫浓度检测仪的研制基于微型光谱仪的单片机系统单片机系统软件构件开发的技术研究基于单片机的液体点滴速度自动检测仪的研制基于单片机系统的多功能温度测量仪的研制基于PIC单片机的电能采集终端的设计和应用基于单片机的光纤光栅解调仪的研制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论