2025-2026学年广东省广州市海珠区九年级(上)期末数学试卷(含部分答案)_第1页
2025-2026学年广东省广州市海珠区九年级(上)期末数学试卷(含部分答案)_第2页
2025-2026学年广东省广州市海珠区九年级(上)期末数学试卷(含部分答案)_第3页
2025-2026学年广东省广州市海珠区九年级(上)期末数学试卷(含部分答案)_第4页
2025-2026学年广东省广州市海珠区九年级(上)期末数学试卷(含部分答案)_第5页
已阅读5页,还剩5页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第=page11页,共=sectionpages11页2025-2026学年广东省广州市海珠区九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。在每小题给出的选项中,只有一项是符合题目要求的。1.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.2.若x=3是关于x的一元二次方程x2-mx-3=0的一个解,则m的值是()A.3 B.2 C.1 D.03.抛物线y=-2x2经平移后,不可能得到的抛物线是()A.y=-x2+4 B.y=-2x2+x

C.y=-2x2+2024x+2025 D.y=-2x2+14.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()

​​​​​​​A.(3,3)

B.(4,3)

C.(3,1)

D.(4,1)5.游乐场里有诸多有趣的项目,大摆锤便是其中之一.如图,大摆锤OB以O为圆心前后摆动,大摆锤底端前后摆动1次的运动轨迹可以看作,连接AC,交OB于点D,已知OB⊥AC,AC=16m,OD=6m,则大摆锤的长度为()

A.8m B.9m C.10m D.12m6.如图,四边形ABCD内接于⊙O,E为BC延长线上一点,连接OD,OB,若∠BCD:∠DCE=3:2,则∠BOD的度数是()A.36°

B.72°

C.120°

D.144°7.关于抛物线y=-(x+1)2+2,下列说法错误的是()A.图象的开口向下 B.当x>0时,y随x的增大而减少

C.图象的顶点坐标是(-1,2) D.图象与y轴的交点坐标为(0,2)8.随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是(

)

A. B. C. D.9.如图所示,某小区规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.如果使草坪部分的总面积为112m2,设小路的宽为xm,那x满足的方程是()

A.2x2-25x+16=0 B.x2-25x+32=0 C.x2-17x+16=0 D.x2-17x-16=010.如图,OP和O′P′是两个相距20米且高度都为3a米的路灯,身高a米的小明(AB)晚上在路灯下沿线段OO′来回散步,则他身体前后的两个影子之和DC的长为()

A.6m B.8m C.10m D.12m二、填空题:本题共6小题,每小题3分,共18分。11.点A(-6,3)与A′关于原点对称,则点A′的坐标是______.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.3,摸出白球的概率是0.4,那么摸出黑球的概率是______.13.如图,二次函数:y=ax2+bx+c(a≠0)与一次函数:y=mx+n(m≠0)的图象交于A、B两点,则当ax2+bx+c<mx+n时,x的取值范围是

.

14.如图,圆锥形的烟囱帽的侧面积是12πcm2,其侧面展开图是圆心角为180°的扇形,则它的母线长是

cm.

15.如图1,这是中国古建筑中的正六边形窗户设计图,图2是由其抽象而成的正六边形ABCDEF,已知正六边形的外接圆半径为6cm,则该正六边形的边心距OG的长为

cm.16.在△ABC中,∠ACB=90°,BC=6,AC=8,点I是△ABC的内心,直线FG经过点I,过点A作AE⊥GF,连接BE,则BE的最大值是

.

三、解答题:本题共9小题,共72分。解答应写出文字说明,证明过程或演算步骤。17.(本小题6分)

解下列方程:

(1)x2+2x-3=0;

(2)2(x+5)=x(x+5).18.(本小题5分)

如图,在△ABC中,D,E分别是边AC和AB上的点,其中AE=2,AD=3,AC=4,AB=6.

(1)求证:△ADE∽△ABC;

(2)记△ADE的面积为S1,△ABC的面积为S2,则=______.19.(本小题6分)

某校为了促进学生对数学文化知识的了解,开展了讲数学家故事的活动,学生通过抽取卡片的形式选取故事的主人公.学校收集了祖冲之、刘徽、韦达、欧拉四位数学家的画像,依次制成A,B,C,D四张卡片(除画像外,其余完全相同),将这四张卡片背面朝上,洗匀放好.

(1)从中随机抽取一张,抽到数学家韦达的概率为______.

(2)从中随机抽取一张不放回,洗匀后再随机抽取一张,请用列表或画树状图的方法,求两次抽取到的卡片都是中国数学家的概率.20.(本小题6分)

抛物线y=x2+mx+1经过点M(3,-2).

(1)求m的值以及此抛物线最低点(或最高点)P的坐标.

(2)已知点A(x-1,y1),B(x+3,y2),C(x+2,y3)在抛物线上且位于对称轴的左侧,有一小球沿着抛物线从左侧向点P运动的过程中,判断小球经过A、B、C三点的先后顺序,并说明理由.21.(本小题7分)

已知关于x的一元二次方程x2-(a+1)x+2a-2=0.

(1)求证:该方程总有两个实数根;

(2)若抛物线y=x2-(a+1)x+2a-2与x轴交于点A,B,且AB=4,求a的值.22.(本小题8分)

如图,BC是⊙O的直径,且BC=4,D为上的点(不与点B、C重合),过点C作⊙O的切线交BD延长线于点A,点E为AC中点,连接DE.

(1)求证:DE是⊙O的切线;

(2)若,请比较△BCD周长与阴影部分周长的大小.23.(本小题10分)

如图,在△ABC中,AB=AC=2,∠BAC=60°,点D是线段BC上一动点(点D不与B,C重合),连接AD.

(1)尺规作图:将AD绕点A顺时针旋转60°得到AE,连接BE,DE(保留作图痕迹,不写作法);

(2)△BDE周长的最小值是______;

(3)点M,N分别是DE,BC中点,连接MN,探究BE与MN的数量关系.24.(本小题12分)

如图,在矩形ABCD中,∠ABC=90°.

(1)如图1,过点D作DE⊥AC,垂足为E,求证:CD2=CE•CA;

(2)如图2,在(1)条件下,点F为DE上一点,连接CF并延长至点G,CG交AD于点O,连接AG、DG,当∠CDG=∠CFD时,判断△AGC的形状,并说明理由;

(3)如图3,平面内一点M,满足∠CMD=∠MCD,CD=1,,连接CM并延长至点H,使∠CBM=∠CHB,连接DH,当线段BH取最小值时,求线段DH的长.

25.(本小题12分)

某城市建设调研小组发现,广州部分公交站台的遮阳棚在风雨天气下存在安全隐患与遮挡不足的问题.为优化设计,该小组考察了某遮阳棚的结构.以下为该小组调研报告的部分记录,请认真阅读,并解决问题.发现问题

确定目标遮阳棚抗风加固公交车安全停靠模型抽象与图形表示遮阳棚横截面示意图,棚顶可视为抛物线的一部分如图2所示.

公交车停靠示意图如图3所示(忽略公交车车顶的实际弧度、空调装置等微小起伏,假设车厢顶部在车辆全长范围内是完全平坦且水平的.)

条件与规范整理如图4当风力较大时,需在棚内侧安装钢架AB(AB为线段)加固,且在棚顶与钢架AB之间安装一根垂直钢架CD(C在棚顶,D在AB上,CD⊥x轴).

车身完全覆盖要求:

公交车需完全停入遮阳棚下方,即车辆整体(包括车厢最高点)均位于遮阳棚的横向覆盖范围内.

垂直安全间隙要求:

车厢最高点与棚顶之间需保持一定的安全间隙,以避免因车辆振动、风载或路面不平等因素发生碰撞.实测数据采集棚顶最高点B到地面距离为4米,棚顶与立柱交点A到地面距离为2米,A、B两点水平距离为12米.已知车身长约8米,公交车车厢最高点距地面约2.5米,车身宽度与站台停靠都匹配,不考虑宽度影响.问题解决:

(1)如图2,以地面为x轴,过点A的竖直直线为y轴建立平面直角坐标系,求抛物线ACB解析式;

(2)如图3,请通过计算说明钢架加固前该公交车能否完全停入遮阳棚正下方;

(3)如图4,根据安全规范,垂直钢架的长度不低于米.请问钢架加固后遮阳棚是否存在安全隐患或遮挡不足的问题.

1.【答案】B

2.【答案】B

3.【答案】A

4.【答案】A

5.【答案】C

6.【答案】D

7.【答案】D

8.【答案】B

9.【答案】C

10.【答案】C

11.【答案】(6,-3)

12.【答案】0.3

13.【答案】x<-1或x>2

14.【答案】

15.【答案】3

16.【答案】5+

17.【答案】x1=1,x2=-3

x1=-5,x2=2

18.【答案】∵AE=2,AD=3,AC=4,AB=6,

∴==,==,

∴=,

又∵∠BAC=∠DAE,

∴△ADE∽△ABC

19.【答案】

(2)

20.【答案】m=-4;抛物线的最低点P为(2,-3)

小球依次经过A、C、B

21.【答案】证明:∵Δ=(a+1)2-4(2a-2)

=a2+2a+1-8a+8

=a2-6a+9

=(a-3)2≥0,

∴该方程总有两个实数根

-1或7

22.【答案】如图,连接OD、DC、OE,

∵AC与⊙O相切于点C,

∴AC⊥OC,

∴∠ACB=90°,

∵BC是⊙O的直径,

∴∠CDB=90°,

∴∠ADC=180°-∠CDB=90°,

∵点E是AC的中点,

∴CE=AE=AC,

∵OC=OD,OE=OE,

∴△OCE≌△ODE(SSS),

∴∠ODE=∠ACB=90°,

∵DE经过⊙O的半径OD的外端,且DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论