版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省阳谷县二中高二上数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将点的极坐标化成直角坐标是(
)A. B.C. D.2.若抛物线的焦点与椭圆的右焦点重合,则的值为A. B.C. D.3.不等式的解集为()A. B.C. D.4.经过点且与双曲线有共同渐近线的双曲线方程为()A. B.C. D.5.已知点,则直线的倾斜角为()A. B.C. D.6.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.647.在等比数列{an}中,a1=8,a4=64,则a3等于()A.16 B.16或-16C.32 D.32或-328.圆与圆的位置关系是()A.相离 B.内含C.相切 D.相交9.已知直线经过点,且是的方向向量,则点到的距离为()A. B.C. D.10.设,,,则,,大小关系是A. B.C. D.11.若函数在上为单调增函数,则m的取值范围()A. B.C. D.12.椭圆:与双曲线:的离心率之积为2,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中项的系数为______.(结果用数值表示)14.不等式的解集是________.15.双曲线上一点P到的距离最小值为___________.16.某校学生在研究折纸实验中发现,当对折后纸张达到一定的厚度时,便不能继续对折了.在理想情况下,对折次数与纸的长边和厚度有关系:.现有一张长边为30cm,厚度为0.05cm的矩形纸,根据以上信息,当对折完4次时,的最小值为________;该矩形纸最多能对折________次.(参考数值:,)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知正四棱锥中,O为底面对角线的交点.(1)求证:平面;(2)求证:平面.18.(12分)已知椭圆的离心率为,且其左顶点到右焦点的距离为.(1)求椭圆的方程;(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.19.(12分)在等差数列中,(1)求数列的通项公式;(2)设数列是首项为1,公比为2的等比数列,求数列的前项和.20.(12分)如图,已知三棱柱的侧棱与底面垂直,,,和分别是和的中点,点在直线上,且.(1)证明:无论取何值,总有;(2)是否存在点,使得平面与平面所成角为?若存在,试确定点的位置;若不存在,请说明理由.21.(12分)在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.22.(10分)如图,在四棱锥中,底面满足,,底面,且,.(1)证明平面;(2)求平面与平面的夹角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】本题考查极坐标与直角坐标互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A2、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D3、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.4、C【解析】共渐近线的双曲线方程,设,把点代入方程解得参数即可.【详解】设,把点代入方程解得参数,所以化简得方程故选:C.5、A【解析】由两点坐标,求出直线的斜率,利用,结合倾斜角的范围即可求解.【详解】设直线AB的倾斜角为,因为,所以直线AB的斜率,即,因为,所以.故选:A6、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.7、C【解析】首先根据a4=a1q3,求得q=2,再由a3=即可得解.【详解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故选:C8、D【解析】先由圆的方程得出两圆的圆心坐标和半径,求出两圆心间的距离与两半径之和与差比较可得答案.【详解】圆的圆心为,半径为圆的圆心为,半径为两圆心间的距离为由,所以两圆相交.故选:D9、B【解析】求出,根据点到直线的距离的向量公式进行求解.【详解】因为,为的一个方向向量,所以点到直线的距离.故选:B10、A【解析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【详解】考查函数,则,在上单调递增,,(3),即,,故选:【点睛】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题11、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.12、C【解析】先求出椭圆的离心率,再由题意得出双曲线的离心率,根据离心率即可求出渐近线斜率得解.【详解】椭圆:的离心率为,则,依题意,双曲线;的离心率为,而,于是得,解得:,所以双曲线的渐近线方程为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求解出该二项式展开式的通项,然后求解出满足题意的项数值,带入通项即可求解出展开式的系数.【详解】展开式通项为,由题意,令,解得,,所以项的系数为.故答案为:.14、【解析】把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集【详解】不等式得,故,故答案为:.15、2【解析】设出点P的坐标,利用两点间距离公式结合二次函数求出最小值即可作答.【详解】设,则,即,于是得,而,则当时,,所以双曲线上一点P到的距离最小值为2.故答案为:216、①.64②.6【解析】利用即可求解,利用和换底公式进行求解.【详解】令,则,则,即,即当对折完4次时,最小值为;由题意,得,,则,所以该矩形纸最多能对折6次.故答案为:64,6.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)根据给定条件,利用线面平行的判定推理作答.(2)利用正四棱锥的结构特征,结合线面垂直的判定推理作答.小问1详解】在正四棱锥中,由正方形得:,而平面,平面,所以平面.【小问2详解】在正四棱锥中,O为底面对角线的交点,则O是AC,BD的中点,而,,则,,因,平面,所以平面.18、(1);(2)存在,.【解析】(1)由题设可知求出,再结合,从而可求出椭圆的方程,(2)①若直线与轴垂直,由对称性可知,代入椭圆方程可求得结果,②若直线不与轴垂直,设直线的方程为,将直线方程与椭圆方程联立方程组,消去,然后利用根与系数的关系,设,,再由条件,得,从而得,再利用点到直线的距离公式可求得结果【详解】(1)由题设可知解得,,,所以椭圆的方程为:;(2)设,,①若直线与轴垂直,由对称性可知,将点代入椭圆方程,解得,原点到该直线的距离;②若直线不与轴垂直,设直线的方程为,由消去得,则由条件,即,由韦达定理得,整理得,则原点到该直线的距离;故存在定点,使得到直线的距离为定值.19、(1)(2)【解析】(1)根据等差数列条件列方程,即可求通项公式;(2)先由等比数列通项公式求出,解得,分组求和即可.【小问1详解】设等差数列的公差为,则,∴,由,∴,∴数列的通项公式为.【小问2详解】∵数列是首项为1,公比为2的等比数列,∴,即,∴,∴.20、(1)证明见解析;(2)不存在,理由见解析.【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算得出,即可得出结论;(2)计算出平面的一个法向量,利用空间向量法可得出关于的方程,即可得出结论.【详解】(1)因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,所以,,则,因此,无论取何值,总有;(2),设平面的法向量为,则,取,则,,所以,平面的一个法向量为,易知平面的一个法向量为,由题意可得,整理可得,,此方程无解,因此,不存在点,使得平面与平面所成的角为.21、(1),常数项为(2)5【解析】(1)求出二项式的通项公式,求出第3项和第4项的二项式系数,再利用已知条件列方程求出的值,从而可求出常数项,(2)设展开式中系数最大的项是第项,则,从而可求出结果【小问1详解】二项式展开式的通项公式为,因为第3项和第4项的二项式系数比为,所以,化简得,解得,所以,令,得,所以常数项为【小问2详解】设展开式中系数最大的项是第项,则,,解得,因为,所以,所以展开式中系数最大的项是第5项22、(1)证明见解析(2)【解析】(1)由已知结合线面平行判定定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 男生职业规划问答指南
- 酿酒工程职业发展规划:技术与品控提升
- 2026秋招:格兰仕笔试题及答案
- 旅游行业服务流程操作手册(标准版)
- 2026年网络游戏代理返利合同
- 2026年老人康复护理家属反馈协议
- 2026年车载语音数据脱敏协议
- 中医推拿培训服务合同(2026年爱好者)
- 2025-2026学年秋季学期初一年级(9)班班主任班级管理工作总结:班级凝聚力建设
- 2025-2026学年第一学期初二年级物理“实验探究”教学反思与改进计划(XX市第五中学)
- 2026年齐齐哈尔高等师范专科学校单招职业技能测试题库必考题
- 物业项目综合服务方案
- 胖东来管理制度全公开执行标准
- 2025-2026学年北京市西城区初二(上期)期末考试物理试卷(含答案)
- 书法培训班安全制度
- 企业管理 华为会议接待全流程手册SOP
- 供水企业制度流程规范
- 框架柱混凝土浇筑施工方案(完整版)
- 电厂危化品安全培训课件
- 酸马奶加工技术
- 护士常用设备仪器培训
评论
0/150
提交评论