毕业设计(论文)-纸箱码垛机器人用气动夹具设计_第1页
毕业设计(论文)-纸箱码垛机器人用气动夹具设计_第2页
毕业设计(论文)-纸箱码垛机器人用气动夹具设计_第3页
毕业设计(论文)-纸箱码垛机器人用气动夹具设计_第4页
毕业设计(论文)-纸箱码垛机器人用气动夹具设计_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

纸箱码垛机器人用气动夹具设计说明书目录摘要 1Abstract 1TOC\o"1-4"\h\u9108第一章绪论 页摘要气动机械手是能模仿人手和臂的某些动作功能,用以按固定程序吸取的、搬运物件或操作工具的自动操作装置。它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。本文主要进行了纸箱码垛机器人用气动夹具的总体结构设计和气动设计。机械手的机械结构由气缸、气爪和连接件组成,可按预定轨迹运动,实现对工件的吸取的、搬运和卸载。气动部分的设计主要是选择合适的控制阀,设计合理的气动控制回路,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作。关键词:气动机械手;气缸;气动回路;四自由度。AbstractPneumaticmanipulatorisaautomateddevicesthatcanmimicthehumanhandandarmmovementstodosomething,aslocanaccordingtoafixedproceduretomovingobjectsorcontroltools.Itcanreplacetheheavylaborinordertoachievetheproductionmechanizationandautomation,andcanworkindangerousworkingenvironmentstoprotectthepersonalsafety,Thereforewidelyusedinmachinebuilding,metallurgy,electronics,lightindustryandatomicenergysectors.Thisarticleismainlyofthepneumaticmanipulatortheoveralldesign,andpneumaticdesign.Thismechanismofmanipulatorincludescylindersandclawsandconnectorsparts,itcanmoveaccordingtotheduetrackonthemovementofgrabbing,carryingandunloading.Thepneumaticpartofthedesignisprimarilytochoosetherightvalvesanddesignareasonablepneumaticcontrolloop,bycontrollingandregulatingpressure,flowanddirectionofthecompressedairtomakeitgetthenecessarystrength,speedandchangedthedirectionofmovementintheprescribedprocedurework.Keyword:pneumaticmanipulator;cylinder;pneumaticloop;Fourdegreesoffreedom.第一章绪论机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。机械手技术涉及到力学、机械学、电气气技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多自由度,可用来搬运物体以完成在各个不同环境中工作。1.1机械手简史现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化产品。机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。他的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿造坦克炮塔,臂回转、俯仰,用气驱动;控制系统用磁鼓最存储装置。不少球坐标式通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手。1962年,美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用气驱动,控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。1978年,美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。美国还十分注意提高机械手的可靠性,改进结构,降低成本。如Unimate公司建立了8年机械手试验台,进行各种性能的试验。准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。瑞士RETAB公司生产一种涂漆机械手,采用示教方法编制程序。瑞典安莎公司采用机械手清理铸铝齿轮箱毛刺等。日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进二种典型机械手后,大力研究机械手的研究。据报道,1976年从事机械手的研究工作的大专院校、研究单位多达50多个。1979年120多个大学和国家研究部门用在机械手的研究费用42%。1979年日本机械手的产值达443亿日元,产量为14535台。其中固定程序和可变程序约占一半,达222亿日元,是1978年的二倍。具有记忆功能的机械手产值约为67亿日元,比1978年增长50%。智能机械手约为17亿日元,为1978年的6倍。截止1979年,机械手累计产量达56900台。在数量上已占世界首位,约占70%,并以每年50%~60%的速度增长。使用机械手最多的是汽车工业,其次是电机、电器。预计到1990年将有55万机器人在工作。第二代机械手正在加紧研制。它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。目前国外已经出现了触觉和视觉机械手。第三代机械手(机器人)则能独立地完成工作过程中的任务。它与电子计算机和电视设备保持联系。并逐步发展成为柔性制造系统FMS(FlexibleManufacturingsystem)和柔性制造单元(FlexibleManufacturingCell)中重要一环。随着工业机器手(机器人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。1.2机械手的分类目前对机械手还没有统一的分类标准。按照不同的分类方式可以把机械手分成多种类型。1.按驱动方式分类按驱动装置的动力源,机械手可分为以下的几种。(1)气式机械手。这种机械手的驱动系统通常由液动机(各种油缸、油马达)、伺服阀、油泵、油箱等组成,这种机器人通常具有很大的抓举能力并且结构紧凑,动作平稳,耐冲击、耐振动,防爆性好,但对制造精度和密封性能要求很高,否则易发生漏油而污染环境。(2)气压式机械手。其驱动系统通常采用通常汽缸、气阀、气罐和空压机组成。特点是气源方便,动作迅速,结构简单、造价较低、维修方便,但难于进行速度控制,并因气压不能太高,固抓举能力较小。(3)电动式机械手。电力驱动是目前机械手使用的最多的一种驱动方式。其特点是电源方便,响应快,驱动力较大,信号检测、传递、处理方便,可以采用多种灵活的控制方案。驱动电机一般采用交流伺服电机、直流伺服电机和步进电机。由于电机速度高,通常还须采用减速机构(如谐波减速机构、论析减速机构、滚珠丝杠和多杆机构)。目前也有一些特制电机直接进行驱动,以简化机构,提高控制精度。其他还有采用混合驱动的机械手,如液-气混合驱动机械手或电-气混合驱动机械手。2.按用途分类机械手按用途可分为下列几种。搬运机械手;喷涂机械手;焊接机械手;装配机械手;其他用途的机械手。如航天用机械手,探海用机械手,以及排险作业机械手等。3.按操作机的位置机构类型和自由度数量分类操作机的位置机构是机械手的重要外形特征,固常用作分类的依据。按这一分类要求,机械手可分为直角坐标型、圆柱坐标型、球坐标型、关节型机械手。直角坐标型

b)圆柱坐标型

c)球坐标型

d)多关节型

e)平面关节型

图1-1工业机械手的基本结构形式操作机本身的自由度最能反应机器人的作业能力,也是分类的重要依据。按这一分类要求,机械手可分为4自由度、5自由度、6自由度和7自由度机械手。4.按其他方法还可以分为(1)家务型机械手:能帮助人们打理生活,做简单的家务活。(2)操作型机械手:能自动控制,可重复编程,多功能,有几个自由度,可固定或运动,用于相关自动化系统中。(3)程控型机械手:按预先要求的顺序及条件,依次控制机械手的机械动作。(4)示教再现型机械手:通过引导或其它方式,先教会机械手动作,输入工作程序,机械手则自动重复进行作业。(5)数控型机械手:不必使机械手动作,通过数值、语言等对机器人进行示教,机械手根据示教后的信息进行作业。(6)感觉控制型机械手:利用传感器获取的信息控制机械手的动作。(7)适应控制型机械手:能适应环境的变化,控制其自身的行动。(8)学习控制型机械手:能“体会”工作的经验,具有一定的学习功能,并将所“学”的经验用于工作中。(9)智能机械手:以人工智能决定其行动的机械手。1.3机械手的组成工业机械手通常由执行机构、驱动传动装置、控制系统和智能系统四部分组成。图1-2为工业机械手的典型结构,图1-3为工业机械手的组成方框图。图1-2工业机械手的典型结构手部手部腕部腕部臂部臂部执行机构腰部执行机构腰部基座部(固定或移动)基座部(固定或移动)工业机械手工业机械手电、液或气驱动装置驱动装置电、液或气驱动装置驱动装置单关节伺服控制器单关节伺服控制器控制系统控制系统关节协调及其它信息交换计算机关节协调及其它信息交换计算机感觉装置子感觉装置子视觉装置子智能系统视觉装置子智能系统语言识别装置语言识别装置图1-3工业机械手的组成方框图执行机构(也称操作机)是机械手赖以完成工作任务的实体,通常由杆件和关节组成。从功能的角度,执行机构可分为:手部、腕部、臂部、腰部和基座等。手部又称末端执行器,是工业机械手直接进行工作的部分,可以是各种夹持器。有时人们也把诸如电焊枪、油漆喷头等划作机器手的手部;腕部与手部相连,主要功能是带动手部完成预定姿态,是操作机的中结构最为复杂的部分;臂部用以连接腰部和腕部,通常由两个臂杆(小臂和大臂)组成,用于带动腕部做平面运动;腰部是连接臂和基座的部件,通常是回转部件,腰部的回转运动加上臂部的平面运动,就能使腕部做空间运动。腰部是执行结构的关键部件,它的制造误差、运动精度和平稳性,对机械手的定位精度有决定性的影响;基座是整个机械手的支撑部分,有固定式和移动式两种。该部件必须有足够的刚度和稳定性。工业机械手的驱动-传动装置包括驱动器和传动机构两个部分,它们通常与执行机构连成一体。传动装置常用的有谐波减速器、滚珠丝杠、链、带以及各种齿轮系。驱动器通常有电机(直流伺服电机、步进电机、交流伺服电机)、气或气动装置,目前使用最多的是交流伺服电机。控制系统一般有控制计算机和伺服控制器组成。控制系统有两种方式。一种是集中式控制,即机械手的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机械手的控制方式又可分为点位控制、连续轨迹控制和力(力矩)控制。智能系统是目前机械手系统中一个不够完善但发展很快的子系统。它可分为两个部分:感知系统和分析-决策智能系统。前者主要靠硬件(各种传感器)实现;后者主要靠软件(如专家系统)实现。1.4应用机械手的意义随着科学技术的发展,机械手也越来越多的地被应用。在机械工业中,铸、焊、铆、冲、压、热处理、机械加工、装配、检验、喷漆、电镀等工种都有应用的实理。其他部门,如轻工业、建筑业、国防工业等工作中也均有所应用。在机械工业中,应用机械手的意义可以概括如下:一、以提高生产过程中的自动化程度应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。二、以改善劳动条件,避免人身事故在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。三、可以减轻人力,并便于有节奏的生产应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都没有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产。综上所述,有效的应用机械手,是发展机械工业的必然趋势。第二章纸箱码垛机器人用气动夹具设计总体方案设计本课题是一个用于纸箱码垛机器人用气动夹具的设计。本设计主要任务是完成机械手的结构方面设计,以及气动回路的设计。在本章中对机械手的坐标形式、自由度、驱动机构等进行了确定。因此,在机械手的执行机构、驱动机构是本次设计的主要任务。2.1机械手的座标型式与自由度按机械手手臂的不同运动形式及其组合情况,其座标型式可分为直角座标式、圆柱座标式、球座标式和关节式。由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此,采用圆柱座标型式。相应的机械手具有三个自由度,为了弥补升降运动行程较小的缺点,增加手臂摆动机构,从而增加一个手臂上下摆动的自由度。2.2机械手的手部结构方案确定为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。考虑到机械手的通用性,同时由于被吸取的工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。按照吸取的工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和降(或俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。手臂的各种运动由气缸来实现。由于气压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用气压传动方式。考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。2.3机械手的主要参数确定机械手的最大吸取载荷是其规格的主参数,由于是采用气动方式驱动,因此考虑吸取的物体不应该太重,查阅相关机械手的设计参数,结合工业生产的实际情况,本设计设计吸取的工件质量为5公斤。基本参数运动速度是机械手主要的基本参数。操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。该机械手最大移动速度设计为。最大回转速度设计为。平均移动速度为。平均回转速度为。机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快慢更为符合速度特性。除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。大部分机械手设计成相当于人工坐着或站着且略有走动操作的空间。过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。在这种情况下宜采用自动传送装置为好。根据统计和比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为。手臂升降行程定为。定位精度也是基本参数之一。该机械手的定位精度为。设计技术参数如下:1、载重:5Kg(夹持式手部)2、自由度数:4个自由度3、坐标型式:圆柱坐标4、最大工作半径:1400mm5、机身最大中心高:1250mm6、主要运动参数:手臂伸缩行程:1200mm手臂伸缩速度:200mm/s机身升降行程:120mm机身升降速度:100mm/s机身回转范围:0-180°机身回转速度:90°/s2.4机械手气路回路设计机械手气动回路的设计主要是选用合适的控制阀,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作,设计的气动回路图如图2-2所示。图2-2机械手气动回路图本设计的气动机械手完成各个运动的气缸只有完全伸出和完全缩回两个状态,选择两位五通换向阀控制各个气缸的运动方向,气缸的进出口回路各设置一个单向节流阀,通过控制进出口空气流量的大小来控制气缸执行器动力的大小和运动速度。设计中采用PLC控制机械手实现各种规定的预定动作,既可以简化控制线路,节省成本,又可以提高劳动生产率。第三章纸箱码垛机器人用气动夹具设计结构设计3.1末端执行器设计(手部结构)末端执行器是装在机械手臂的末端处,用于机械手完成作业任务而专门设计的装置。末端执行器种类繁多,与机械手的用途密切相关,根据其用途,末端执行器可分为搬运用、加工用和测量用等种类。搬运用末端执行器是指各种夹持装置,用来吸取的或吸附被搬运的物体。加工用末端执行器是带有喷枪、焊枪、砂轮、铣刀等加工工具的机器人附加装置,用来进行相应的加工作业。测量用末端执行器是装有测量头或传感器的附加装置,用来进行测量及检验作业。在设计机械手末端执行器时,应注意以下问题;1.机械手末端执行器是根据机械手作业要求来设计的。一个新的末端执行器的出现,就可以增加一种机械手新的应用场所。因此,根据作业的需要和人们的想象力而创造的新的机械手末端执行器,将不断的扩大机械手的应用领域。2.机械手末端执行器的重量、被吸取的物体的重量及操作力和机械手容许的负荷力。因此,要求机械手末端执行器体积小、重量轻、结构紧凑。3.机械手末端执行器的万能性与专用性是矛盾的。万能末端执行器在结构上很复杂,甚至很难实现,例如,仿人的万能机器人灵巧手,至今尚未实用化。目前,能用于生产的还是那些结构简单、万能性不强的机械手末端执行器。从工业实际应用出发,应着重开发各种专用的、高效率的机械手末端执行器,加之以末端执行器的快速更换装置,以实现机械手多种作业功能,而不主张用一个万能的末端执行器去完成多种作业。因为这种万能的执行器的结构复杂且造价昂贵。4.通用性和万能性是两个概念,万能性是指一机多能,而通用性是指有限的末端执行器,可适用于不同的机械手,这就要求末端执行器要有标准的机械接口(如法兰),使末端执行器实现标准化和积木化。5.机械手末端执行器要便于安装和维修,易于实现计算机控制。用计算机控制最方便的是电气式执行机构。因此,工业机械手执行机构的主流是电气式,其次是气式和气压式(在驱动接口中需要增加电-液或电-气变换环节)。末端执行器即机械手手爪,多为双指手爪。按手指的运动方式,可分为回转型和移动型,按夹持方式来分,有外夹式和内撑式两种。机械手夹持器(手爪)的驱动方式主要有三种1.气动驱动方式这种驱动系统是用电磁阀来控制手爪的运动方向,用气流调节阀来调节其运动速度。由于气动驱动系统价格较低,所以气动夹持器在工业中应用较为普遍。另外,由于气体的可压缩性,使气动手爪的吸取的运动具有一定的柔顺性,这一点是吸取的动作十分需要的。2.电动驱动方式电动驱动手爪应用也较为广泛。这种手爪,一般采用直流伺服电机或步进电机,并需要减速器以获得足够大的驱动力和力矩。电动驱动方式可实现手爪的力与位置控制。但是,这种驱动方式不能用于有防爆要求的条件下,因为电机有可能产生火花和发热。3.气驱动方式气驱动系统传动刚度大,可实现连续位置控制。夹持式是最常见的一种,其中常用的有两指式、多指式和双手双指式:按手指夹持工件的部位又可分为内卡式(或内涨式)和外夹式两种:按模仿人手手指的动作,手指可分为一支点回转型,二支点回转型和移动型(或称直进型),其中以二支点回转型为基本型式。当二支点回转型手指的两个回转支点的距离缩小到无穷小时,就变成了一支点回转型手指;同理,当二支点回转型手指的手指长度变成无穷长时,就成为移动型。回转型手指开闭角较小,结构简单,制造容易,应用广泛。移动型应用较少,其结构比较复杂庞大,当移动型手指夹持直径变化的零件时不影响其轴心的位置,能适应不同直径的工件。3.1.1夹持式手部结构设计要素(一)具有足够的握力(即夹紧力)在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。(二)手指间应具有一定的开闭角两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。手指的开闭角应保证工件能顺利进入或脱开,若夹持不同直径的工件,应按最大直径的工件考虑。对于移动型手指只有开闭幅度的要求。(三)保证工件准确定位为使手指和被夹持工件保持准确的相对位置,必须根据被吸取的工件的形状,选择相应的手指形状。例如圆柱形工件采用带“V”形面的手指,以便自动定心。(四)具有足够的强度和刚度手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的影响,要求有足够的强度和刚度以防折断或弯曲变形,当应尽量使结构简单紧凑,自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。(五)考虑被吸取的对象的要求根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点两指回转型,由于工件多为圆柱形,故手指形状设计成V型,其结构如附图所示。图3-1手部结构图由于其工件重量G=5公斤,V形手指的角度,,摩擦系数为(1)根据手部结构的传动示意图,其驱动力为:(2)根据手指夹持工件的方位,可得握力计算公式:所以(3)实际驱动力:1、因为传力机构为齿轮齿条传动,故取,并取。若被吸取的工件的最大加速度取时,则:所以所以夹持工件时所需夹紧气缸的驱动力为。2、气缸的直径本气缸属于单向作用气缸。根据力平衡原理,单向作用气缸活塞杆上的输出推力必须克服弹簧的反作用力和活塞杆工作时的总阻力,其公式为:式中:-活塞杆上的推力,N-弹簧反作用力,N-气缸工作时的总阻力,N-气缸工作压力,Pa弹簧反作用按下式计算:Gf=式中:-弹簧刚度,N/m-弹簧预压缩量,m-活塞行程,m-弹簧钢丝直径,m-弹簧平均直径,.-弹簧有效圈数.-弹簧材料剪切模量,一般取在设计中,必须考虑负载率的影响,则:由以上分析得单向作用气缸的直径:代入有关数据,可得所以:查有关手册圆整,得由,可得活塞杆直径:圆整后,取活塞杆直径校核,按公式有:其中,[],则:满足实际设计要求。3、缸筒壁厚的设计缸筒直接承受压缩空气压力,必须有一定厚度。一般气缸缸筒壁厚与内径之比小于或等于1/10,其壁厚可按薄壁筒公式计算:式中:6-缸筒壁厚,mm-气缸内径,mm-实验压力,取,Pa材料为:ZL3,[]=3MPa代入己知数据,则壁厚为:取,则缸筒外径为:3.2机械手手腕结构设计手腕是连接手部和手臂的部件,它的作用是调整或改变工件的方位,因而它具有独立的自由度,以使机械手适应复杂的动作要求。手腕自由度的选用与机械手的通用性、加工工艺要求、工件放置方位和定位精度等许多因素有关。由于本机械手吸取的工件是水平放置,同时考虑到通用性,因此给手腕设一绕x轴转动回转运动才可满足工作的要求目前实现手腕回转运动的机构,应用最多的为回转油(气)缸,因此我们选用回转气缸。它的结构紧凑,但回转角度小于,并且要求严格的密封。3.2.1手腕转动时所需的驱动力矩手腕的回转、上下和左右摆动均为回转运动,驱动手腕回转时的驱动力矩必须克服手腕起动时所产生的惯性力矩,手腕的转动轴与支承孔处的摩擦阻力矩,动片与缸径、定片、端盖等处密封装置的摩擦阻力矩以及由于转动件的中心与转动轴线不重合所产生的偏重力矩.图3-1所示为手腕受力的示意图。图3-1手腕回转3.2.2回转气缸的驱动力矩计算在机械手的手腕回转运动中所采用的回转缸是单叶片回转气缸,它的原理如图3-2所示,定片1与缸体2固连,动片3与回转轴5固连。动片封圈4把气腔分隔成两个.当压缩气体从孔a进入时,推动输出轴作逆时4回转,则低压腔的气从b孔排出。反之,输出轴作顺时针方向回转。单叶气缸的压力P驱动力矩M的关系为:,或图3-2回转气缸简图式中:M:回转气缸的驱动力矩(N.cm)P:回转气缸的工作压力(N.cm)R:缸体内壁半径(cm)r:输出轴半径(cm)b:动片宽度(cm)上述驱动力矩和压力的关系式是对于低压腔背压为零的情况下而言的。若低压腔有一定的背压,则上式中的p应代以工作压力p1与背压p2之差。3.2.3手腕回转缸的设计计算1.尺寸设计气缸长度设计为,气缸内径为=96mm,半径,轴径=26mm,半径,气缸运行角速度=,加速度时间=0.1s,压强,则力矩2.尺寸校核1.测定参与手腕转动的部件的质量,分析部件的质量分布情况,质量密度等效分布在一个半径的圆盘上,那么转动惯量:()工件的质量为5,质量分布于长的棒料上,那么转动惯量。假如工件中心与转动轴线不重合,对于长的棒料来说,最大偏心距,其转动惯量为:3、手腕转动件和工件的偏重对转动轴线所产生的偏重力矩为M偏,考虑手腕转动件重心与转动轴线重合,,夹持工件一端时工件重心偏离转动轴线,则+4、手腕转动轴在轴颈处的摩擦阻力矩为,对于滚动轴承,对于滑动轴承=0.1,,为手腕转动轴的轴颈直径,,,,为轴颈处的支承反力,粗略估计,,5.回转缸的动片与缸径、定片、端盖等处密封装置的摩擦阻力矩M封,与选用的密衬装置的类型有关,应根据具体情况加以分析。在此处估计为的3倍,3设计尺寸符合使用要求,安全。3.3手臂伸缩、升降、回转气缸的校核计算3.3.1手臂伸缩气缸计算手臂伸缩气缸采用亚德客的气缸,具体缸径选择63的缸径。1、在校核尺寸时,只需校核气缸内径=63mm,半径R=31.5mm的气缸的尺寸满足使用要求即可,设计使用压强,则驱动力:(1)测定手腕质量为50kg,设计加速度,则惯性力(2)考虑活塞等的摩擦力,设定摩擦系数,总受力所以标准气缸的尺寸符合实际使用驱动力要求要求。气压驱动的机械手臂在进行伸缩运动时,为了防止手臂绕轴线转动,以保证手指的正确方向,并使活塞杆不受较大的弯曲力矩作用,以增加手臂的刚性,在设计手臂结构时,应该采用导向装置。具体的安装形式应该根据本设计的具体结构和吸取的物体重量等因素来确定,同时在结构设计和布局上应该尽量减少运动部件的重量和减少对回转中心的惯量。导向杆目前常采用的装置有单导向杆,双导向杆,四导向杆等,在本设计中才用单导向杆来增加手臂的刚性和导向性。在本设计中,为了使手臂的两端能够尽量接近重力矩平衡状态,减少手抓一侧重力矩对性能的影响,故在手臂伸缩气缸一侧加装平衡装置,装置内加放砝码,砝码块的质量根据吸取的物体的重量和气缸的运行参数视具体情况加以调节,务求使两端尽量接近平衡。3.3.2手臂升降气缸计算1、尺寸设计气缸运行长度设计为=118mm,气缸内径为=110mm,半径R=55mm,气缸运行速度,加速度时间=0.1s,压强p=0.4MPa,则驱动力2、尺寸校核(1)测定手腕质量为80kg,则重力(2)设计加速度,则惯性力(3)考虑活塞等的摩擦力,设定一摩擦系数,总受力所以设计尺寸符合实际使用要求。3.3.3手臂回转气缸计算1、尺寸设计气缸长度设计为,气缸内径为,半径R=105mm,轴径半径,气缸运行角速度=,加速度时间0.5s,压强,则力矩:2、尺寸校核1.测定参与手臂转动的部件的质量,分析部件的质量分布情况,质量密度等效分布在一个半径的圆盘上,那么转动惯量:()考虑轴承,油封之间的摩擦力,设定一摩擦系数,总驱动力矩设计尺寸满足使用要求。第四章自动控制系统的设计4.1驱动系统设计要求本次设计的纸箱码垛机器人用气动夹具设计靠气压驱动机械手。因此,相应地有手臂升降、手臂伸缩机构均用气缸驱动与控制。设计要求(1)满足机械手动作顺序要求。动作顺序的各个动作均由电控系统发讯号控制相应的电磁铁,按程序依次步进动作而实现。(2)机械手伸缩臂安装在升降大臂上,前端安装夹持器,按控制系统的指令,完成工件的自动换位工作。伸缩要平稳灵活,动作快捷,定位准确,工作协调。(3)控制系统设计要满足伸缩臂动作逻辑要求,气缸及其控制元件的选择要满足伸缩臂动力要求和运动时间要求4.2驱动系统设计方案采用螺杆压缩机供气,动作顺序:从原位开始——升降臂下降——夹持器夹紧——升降臂上升——底座快进回转——底座慢进——手腕回转——伸缩臂伸出——夹持器松开——伸缩臂缩回;待加工完毕后,伸缩臂伸出——夹持器夹紧——伸缩臂缩回——底座快退(回转)——底座慢退——手腕回转——升降臂下降——夹持器松开——升降臂上升到原位停止,准备下次循环。上述动作均由电控系统发讯号控制相应的电磁铁(电磁换向阀),按程序依次步进动作而实现。(1)各气缸的换向回路为便于机械手的自动控制,采用可编程控制器进行控制,前分析可得系统的压力和流量都不高,选用电磁换向阀回路,以获得较好的自动化成都和经济效益。气动搬运机械手,手臂伸缩,手腕回转,夹持动作采用并联供油,这样可有效降低系统的供油压力,此时为了保证多缸运动的系统互不干扰,实现同步或非同步运动,换向阀采用中位“O”型换向阀。(2)调速方案整个气系统只用单泵工作,各气缸所需的流量相差较大,各气缸都用气泵的全流量是无法满足设计要求的。尽管有的气缸是单一速度工作,但也需要进行节流调速,用以保证气缸的平稳运行。各缸可选择进路或回路节流调速,选用节流阀调速。单泵供气系统以所有气缸中需流量最大的来选择泵的流量。系统较为简单,所需元件较少,经济性好,考虑到系统功率较小,其溢流损失也较小。(3)缓冲回路伸缩臂处设置缓冲回路,使用单向节流阀(4)系统安全可靠性夹紧缸在夹紧工件时,为防止失电等意外情况,设置锁紧保压回路。手臂升降缸在系统失压的情况下会自由下落或超速下行,所以在回路中设置平衡回路。第五章PLC控制系统设计5.1PLC控制的优点(1)在采用PLC(2)控制系统结构简单,外部线路简化。(3)PLC可实现各种复杂的控制系统,方便地增加或改变控制功能。(4)PLC可进行故障自动检测与报警显示,提高运行安全性,并便于检修。(5)用于群控调配和管理,并提高病床呼叫运行效率。(6)更改控制方案时不需改动硬件接线。5.2PLC的工作原理PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。即在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。5.3程序梯形图5.4控制程序的调试STEP7-Micro/WINV3.1(西门子S7-200编程软件)编写的梯形图程序,并注意选择对应的PLC型号(CPU226)。编译无错误后使用引出命令将梯形图程序存成后缀为.awl格式的可执行程序文件并保存在你设定的文件夹中(如bchjxt.awl)。打开西门子S7-200仿真程序汉化版,输入密码,设定PLC的CPU型号为CPU226,打开“程序”使用“装载程序”命令将bchjxt.awl程序文件载入仿真程序软件中,点入输出的位。通过对仿真程序中指示灯的运行状态的观察来检验程序是否准确,并对错误部分进行修改,完成程序。在程序运行过程中可以配合秒表,手表等器材大概的估计时间的准确性,并实时的对错误的程序段进行标记,以方便后面的修正工作。最好有两个人分工协作对程序校验,以免一个人分心做不同的事而造成不必要的错误结论本文所设计的纸箱码垛机器人用气动夹具设计结构比较简单,功能比较简单,设计比较合理,能够满足部分不同形状的工件的转移、夹取、安装等功能,方便快捷。其设计主要考虑以下几个方面:(1)机械手气动回路设计选用合适的气动元件,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论