2026届陕西省安康市数学高一下期末质量检测试题含解析_第1页
2026届陕西省安康市数学高一下期末质量检测试题含解析_第2页
2026届陕西省安康市数学高一下期末质量检测试题含解析_第3页
2026届陕西省安康市数学高一下期末质量检测试题含解析_第4页
2026届陕西省安康市数学高一下期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届陕西省安康市数学高一下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,其外接球体积为()A. B. C. D.2.设集合,则()A. B. C. D.3.圆心为且过原点的圆的方程是()A.B.C.D.4.某班20名学生的期末考试成绩用如图茎叶图表示,执行如图程序框图,若输入的()分别为这20名学生的考试成绩,则输出的结果为()A.11 B.10 C.9 D.85.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为()A. B. C. D.6.已知角的终边经过点,则()A. B. C. D.7.若关于的方程有且只有两个不同的实数根,则实数的取值范围是()A. B. C. D.8.在三棱锥中,,,则三棱锥外接球的体积是()A. B. C. D.9.若存在正实数,使得,则()A.实数的最大值为 B.实数的最小值为C.实数的最大值为 D.实数的最小值为10.盒中装有除颜色以外,形状大小完全相同的3个红球、2个白球、1个黑球,从中任取2个球,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球 B.至少有一个白球;红、黑球各一个C.恰有一个白球:一个白球一个黑球 D.至少有一个白球;都是白球二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆上有两个点到直线的距离为3,则半径的取值范围是________12.在中,已知M是AB边所在直线上一点,满足,则________.13.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.14.若函数的图像与直线有且仅有四个不同的交点,则的取值范围是______15.某县现有高中数学教师500人,统计这500人的学历情况,得到如下饼状图,该县今年计划招聘高中数学新教师,只招聘本科生和研究生,使得招聘后该县高中数学专科学历的教师比例下降到,且研究生的比例保持不变,则该县今年计划招聘的研究生人数为_______.16.设,则的值是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C的圆心为(1,1),直线与圆C相切.(1)求圆C的标准方程;(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.18.已知圆过点,且与圆关于直线:对称.(1)求圆的标准方程;(2)设为圆上的一个动点,求的最小值.19.已知直线与直线的交点为P,点Q是圆上的动点.(1)求点P的坐标;(2)求直线的斜率的取值范围.20.已知等差数列满足,且是的等比中项.(1)求数列的通项公式;(2)设,数列的前项和为,求使成立的最大正整数的值.21.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

易得该几何体为三棱锥,再根据三视图在长方体中画出该三棱锥,再根据此三棱锥与长方体的外接球相同求解即可.【详解】在长方体中画出该几何体,易得为三棱锥,且三棱锥与该长方体外接球相同.又长方体体对角线等于外接球直径,故.故外接球体积故选:D【点睛】本题主要考查了三视图还原几何体以及求外接球体积的问题,属于基础题.2、B【解析】

补集:【详解】因为,所以,选B.【点睛】本题主要考查了集合的运算,需要掌握交集、并集、补集的运算。属于基础题。3、D【解析】试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程.4、A【解析】

首先判断程序框图的功能,然后从茎叶图数出相应人数,从而得到答案.【详解】由算法流程图可知,其统计的是成绩大于等于120的人数,所以由茎叶图知:成绩大于等于120的人数为11,故选A.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.5、B【解析】

算出基本事件的总数和随机事件中基本事件的个数,利用古典概型的概率的计算公式可求概率.【详解】设为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数,恰好抽到2幅不同种类包含的基本事件个数,则恰好抽到2幅不同种类的概率为.故选B.【点睛】计算出所有的基本事件的总数及随机事件中含有的基本事件的个数,利用古典概型的概率计算即可.计数时应该利用排列组合的方法.6、C【解析】

首先根据题意求出,再根据正弦函数的定义即可求出的值.【详解】,.故选:C【点睛】本题主要考查正弦函数的定义,属于简单题.7、B【解析】

方程化为,可转化为半圆与直线有两个不同交点,作图后易得.【详解】由得由题意半圆与直线有两个不同交点,直线过定点,作出半圆与直线,如图,当直线过时,,,当直线与半圆相切(位置)时,由,解得.所以的取值范围是.故选:B.【点睛】本题考查方程根的个数问题,把问题转化为直线与半圆有两个交点后利用数形结合思想可以方便求解.8、B【解析】

三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心,外接球的半径为,可求出,然后由可求出半径,进而求出外接球的体积.【详解】由题意,易知三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心.因为,所以.因为,所以.设三棱锥外接球的半径为,则,解得,故三棱锥外接球的体积是.故选B.【点睛】本题考查了三棱锥的外接球体积的求法,考查了学生的空间想象能力与计算求解能力,属于中档题.9、C【解析】

将题目所给方程转化为关于的一元二次方程,根据此方程在上有解列不等式组,解不等式组求得的取值范围,进而求出正确选项.【详解】由得,当时,方程为不和题意,故这是关于的一元二次方程,依题意可知,该方程在上有解,注意到,所以由解得,故实数的最大值为,所以选C.【点睛】本小题主要考查一元二次方程根的分布问题,考查化归与转化的数学思想方法,属于中档题.10、B【解析】

根据对立事件和互斥事件的定义,对每个选项进行逐一分析即可.【详解】从6个小球中任取2个小球,共有15个基本事件,因为存在事件:取出的两个球为1个白球和1个红球,故至少有一个白球;至少有一个红球,这两个事件不互斥,故A错误;因为存在事件:取出的两个球为1个白球和1个黑球,故恰有一个白球:一个白球一个黑球,这两个事件不互斥,故C错误;因为存在事件:取出的两个球都是白球,故至少有一个白球;都是白球,这两个事件不互斥,故D错误;因为至少有一个白球,包括:1个白球和1个红球,1个白球和1个黑球,2个白球这3个基本事件;红、黑球各一个只包括1个红球1个白球这1个基本事件,故两个事件互斥,因还有其它基本事件未包括,故不对立.故B正确.故选:B.【点睛】本题考查互斥事件和对立事件的辨析,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由圆上有两个点到直线的距离为3,先求出圆心到直线的距离,得到不等关系式,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,又因为圆上有两个点到直线的距离为3,则,解得,即圆的半径的取值范围是.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中合理应用圆心到直线的距离,结合图象得到半径的不等关系式是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.12、3【解析】

由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,

可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.13、1【解析】

利用线面平行的性质定理来进行解答.【详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【点睛】本题考查线面平行的性质定理,是基础题.14、【解析】

将函数写成分段函数的形式,再画出函数的图象,则直线与函数图象有四个交点,从而得到的取值范围.【详解】因为因为所以,所以图象关于对称,其图象如图所示:因为直线与函数图象有四个交点,所以.故答案为:.【点睛】本题考查利用三角函数图象研究与直线交点个数,考查数形结合思想的应用,作图时发现图象关于对称,是快速画出图象的关键.15、50【解析】

先计算出招聘后高中数学教师总人数,然后利用比例保持不变,得到该县今年计划招聘的研究生人数.【详解】招聘后该县高中数学专科学历的教师比例下降到,则招聘后,该县高中数学教师总人数为,招聘后研究生的比例保持不变,该县今年计划招聘的研究生人数为.【点睛】本题主要考查学生的阅读理解能力和分析能力,从题目中提炼关键字眼“比例保持不变”是解题的关键.16、【解析】

根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】

(1)利用点到直线的距离可得:圆心到直线的距离.根据直线与圆相切,可得.即可得出圆的标准方程.(2)①当直线的斜率存在时,设直线的方程:,即:,可得圆心到直线的距离,又,可得:.即可得出直线的方程.②当的斜率不存在时,,代入圆的方程可得:,解得可得弦长,即可验证是否满足条件.【详解】(1)圆心到直线的距离.直线与圆相切,.圆的标准方程为:.(2)①当直线的斜率存在时,设直线的方程:,即:,,又,.解得:.直线的方程为:.②当的斜率不存在时,,代入圆的方程可得:,解得,可得弦长,满足条件.综上所述的方程为:或.【点睛】本题考查直线与圆的相切的性质、点到直线的距离公式、弦长公式、分类讨论方法,考查推理能力与计算能力,属于中档题.18、(1);(2).【解析】

试题分析:(1)两个圆关于直线对称,那么就是半径相等,圆心关于直线对称,利用斜率相乘等于和中点在直线上建立方程,解方程组求出圆心坐标,同时求得圆的半径,由此求得圆的标准方程;(2)设,则,代入化简得,利用三角换元,设,所以.试题解析:(1)设圆心,则,解得,则圆的方程为,将点的坐标代入得,故圆的方程为.(2)设,则,且,令,∴,故的最小值为-1.考点:直线与圆的位置关系,向量.19、(1);(2).【解析】

(1)联立方程求解即可;(2)设直线PQ的斜率为,得直线PQ的方程为,由题意,直线PQ与圆有公共点得求解即可【详解】(1)由得∴P的坐标为的坐标为.(2)由得∴圆心的坐标为,半径为设直线PQ的斜率为,则直线PQ的方程为由题意可知,直线PQ与圆有公共点即或∴直线PQ的斜率的取值范围为.【点睛】本题考查直线交点坐标,考查直线与圆的位置关系,考查运算能力,是基础题20、(1)(2)8【解析】

(1)设等差数列的公差为,根据题意列出有关和的方程组,可解出和的值,从而可求出数列的通项公式;(2)先得出,利用裂项法求出数列的前项和,然后解不等式,可得出的取值范围,于此可得出的最大值.【详解】(1)设等差数列的公差为,,即,∴,是,的等比中项,∴,即,解得.∴数列的通项公式为;(2)由(1)得∴.由,得,∴使得成立的最大正整数的值为8.【点睛】本题考查等差数列的通项公式,考查裂项求和法,解等差数列的通项公式,一般是利用方程思想求出等差数列的首项和公差,利用这两个基本两求出等差数列的通项公式,考查运算求解能力,属于中等题.21、(1),(2)递增区间为,(3)【解析】

(1)根据向量的数量积坐标运算,以及模长的求解公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论