2026届广西北海市高一下数学期末质量跟踪监视模拟试题含解析_第1页
2026届广西北海市高一下数学期末质量跟踪监视模拟试题含解析_第2页
2026届广西北海市高一下数学期末质量跟踪监视模拟试题含解析_第3页
2026届广西北海市高一下数学期末质量跟踪监视模拟试题含解析_第4页
2026届广西北海市高一下数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广西北海市高一下数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.122.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①;②;③;④.其中“同簇函数”的是()A.①②B.①④C.②③D.③④3.定义运算,设,若,,,则的值域为()A. B. C. D.4.某正弦型函数的图像如图,则该函数的解析式可以为().A. B.C. D.5.执行如图所示的程序语句,输出的结果为()A. B.C. D.6.正项等比数列与等差数列满足,,,则的大小关系为()A. B. C. D.不确定7.函数的零点有两个,求实数的取值范围()A. B.或 C.或 D.8.对于不同的直线l、、及平面,下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.若向量互相垂直,且,则的值为()A. B. C. D.10.已知,则的值等于()A.2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,以为直径的圆中,,在圆上,,于,于,,记,,的面积和为,则的最大值为______.12.设为等差数列,若,则_____.13.在中,已知M是AB边所在直线上一点,满足,则________.14.已知函数,若函数恰有个零点,则实数的取值范围为__________.15.已知圆C的方程为,一定点为A(1,2),要使过A点作圆的切线有两条,则a的取值范围是____________16.设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是以向量为边的平行四边形,又,试用表示.18.为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;(2)设、、、四名学生的考试成绩在区间内,、两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生、至少有一人被选中的概率.19.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.20.在海上进行工程建设时,一般需要在工地某处设置警戒水域;现有一海上作业工地记为点,在一个特定时段内,以点为中心的1海里以内海域被设为警戒水域,点正北海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东且与点相距10海里的位置,经过12分钟又测得该船已行驶到点北偏东且与点相距海里的位置.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.试判断它是否会进入警戒水域(点与船的距离小于1海里即为进入警戒水域),并说明理由.21.已知数列和满足:,,,,且是以q为公比的等比数列.(1)求证:;(2)若,试判断是否为等比数列,并说明理由.(3)求和:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。2、C【解析】试题分析:对于①中的函数而言,,对于③中的函数而言,,由“同簇函数”的定义而知,互为“同簇函数”的若干个函数的振幅相等,将②中的函数向左平移个单位长度,得到的新函数解析式为,故选C.考点:1.新定义;2.三角函数图象变换3、C【解析】

由题意,由于与都是周期函数,且最小正周期都是,故只须在一个周期上考虑函数的值域即可,分别画出与的图象,如图所示,观察图象可得:的值域为,故选C.4、C【解析】试题分析:由图象可得最大值为2,则A=2,周期,∴∴,又,是五点法中的第一个点,∴,∴把A,B排除,对于C:,故选C考点:本题考查函数的图象和性质点评:解决本题的关键是确定的值5、B【解析】

通过解读算法框图功能发现是为了求数列的和,采用裂项相消法即可得到答案.【详解】由已知中的程序语句可知:该程序的功能是求的值,输出的结果为,故选B.【点睛】本题主要考查算法框图基本功能,裂项相消法求和,意在考查学生的分析能力和计算能力.6、B【解析】

利用分析的关系即可.【详解】因为正项等比数列与等差数列,故又,当且仅当时“=”成立,又即,故,故选:B【点睛】本题主要考查等差等比数列的性质与基本不等式的“一正二定三相等”.若是等比数列,且,则若是等差数列,且,则7、B【解析】

由题意可得,的图象(红色部分)和直线有2个交点,数形结合求得的范围.【详解】由题意可得的图象(红色部分)和直线有2个交点,如图所示:故有或,故选:B.【点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的图象的交点个数问题.8、C【解析】

由平面的基本性质及其推论得:对于选项C,可能l∥n或l与n相交或l与n异面,即选项C错误,得解.【详解】由平行公理4可得选项A正确,由线面垂直的性质可得选项B正确,由异面直线所成角的定义可得选项D正确,对于选项C,若l∥α,n∥α,则l∥n或l与n相交或l与n异面,即选项C错误,故选C.【点睛】本题考查了平面中线线、线面的关系及性质定理与推论的应用,属简单题.9、B【解析】

首先根据题意得到,再计算即可.【详解】因为向量互相垂直,,所以.所以.故选:B【点睛】本题主要考查平面向量模长的计算,同时考查了平面向量数量积,属于简单题.10、D【解析】

根据分段函数的定义域以及函数解析式的关系,代值即可.【详解】故选:D【点睛】本题考查了分段函数的求值问题,考查了学生综合分析,数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

可设,表示出S关于的函数,从而转化为三角函数的最大值问题.【详解】设,则,,,当时,.【点睛】本题主要考查函数的实际运用,三角函数最值问题,意在考查学生的划归能力,分析能力和数学建模能力.12、【解析】

根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。13、3【解析】

由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,

可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.14、【解析】

首先根据题意转化为函数与有个交点,再画出与的图象,根据图象即可得到的取值范围.【详解】有题知:函数恰有个零点,等价于函数与有个交点.当函数与相切时,即:,,,解得或(舍去).所以根据图象可知:.故答案为:【点睛】本题主要考查函数的零点问题,同时考查了学生的转化能力,体现了数形结合的思想,属于中档题.15、【解析】

使过A点作圆的切线有两条,定点在圆外,代入圆方程计算得到答案.【详解】已知圆C的方程为,要使过A点作圆的切线有两条即点A(1,2)在圆C外:恒成立.综上所述:故答案为:【点睛】本题考查了点和圆的位置关系,通过切线数量判断位置关系是解题的关键.16、【解析】

由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为.考点:函数的对称性、周期性,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,,【解析】试题分析:利用向量的加减法的几何意义得,再结合已知及图形得最后求出.试题解析:解:考点:向量的加减法的几何意义18、(1);(2).【解析】

(1)由频率分布直方图能求出a.由此能估计该市高中学生的平均成绩;(2)现从这6名学生中任选两人参加座谈会,求出基本事件总数,再学生M、N至少有一人被选中包含的基本事件个数,由此能求出学生M、N至少有一人被选中的概率.【详解】(1)由频率分布直方图得:,∴估计该市高中学生的平均成绩为:.(2)设A、B、C、D四名学生的考试成绩在区间[80,90)内,M、N两名学生的考试成绩在区间[60,70)内,现从这6名学生中任选两人参加座谈会,基本事件总数,学生M、N至少有一人被选中包含的基本事件个数,∴学生M、N至少有一人被选中的概率.【点睛】本题考查了利用频率分布直方图求平均数,考查了古典概型计算公式,考查了数学运算能力.19、(1)见解析(2)9或35或133【解析】

(1)分别写出和,做商,再用表示出,代入即可得q,由可得,得证;(2)由(1)得数列的通项公式,代入并整理,根据即得m+n的值。【详解】(1)证明:因为,所以,所以.因为,所以,所以.因为,所以.故数列是以2为首项,为公比的等比数列.(2)解:由(1)可得.因为,所以,整理得,则.因为,,所以,则的值为2或4或6.当时,,,符合题意,则;当时,,,符合题意,则;当时,,,符合题意,则.综上,的值为9或35或133.【点睛】本题考查求数列通项公式和已知通项公式求参数的和,解题关键在于细心验证m取值是否满足题干要求。20、(1)海里/小时;(2)该船不改变航行方向则会进入警戒水域,理由见解析.【解析】

(1)建立直角坐标系,首先求出位置与位置的距离,然后除以经过的时间即可求出船的航行速度;(2)求出位置与位置所在直线方程,求出位置与直线的距离与1海里对比即可.【详解】(1)如图建立平面直角坐标系:设一个单位长度为1海里,则坐标中,,,,再由方位角可求得:,,所以,又因为12分钟=0.2小时,则(海里/小时),所以该船行驶的速度为海里/小时;(2)直线的斜率为,所以直线的方程为:,即,所以点到直线的距离为,即该船不改变航行方向行驶时离点的距离小于1海里,所以若该船不改变航行方向则会进入警戒水域.【点睛】本题主要考查了直角坐标系中两点间距离的计算,直线与圆的位置关系,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论