版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市西城区月坛中学数学高一下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的前项和为,且,则()A.255 B.375 C.250 D.2002.设直线系.下列四个命题中不正确的是()A.存在一个圆与所有直线相交B.存在一个圆与所有直线不相交C.存在一个圆与所有直线相切D.M中的直线所能围成的正三角形面积都相等3.若,则()A.-1 B. C.-1或 D.或4.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形5.下列各角中,与角终边相同的角是()A. B. C. D.6.化简=()A. B.C. D.7.已知,且,那么a,b,,的大小关系是()A. B.C. D.8.为了得到函数的图象,只需把函数的图象上的所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位9.若圆锥的高扩大为原来的3倍,底面半径缩短为原来的12A.缩小为原来的34 B.缩小为原来的C.扩大为原来的2倍 D.不变10.在中,角的对边分别为,已知,则的大小是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前项和为,且,,则;12.若一组样本数据,,,,的平均数为,则该组样本数据的方差为13.公比为2的等比数列的各项都是正数,且,则的值为___________14.已知数列的前项和,那么数列的通项公式为__________.15.设数列满足,,且,用表示不超过的最大整数,如,,则的值用表示为__________.16.已知且,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期和最大值;(2)求在上的单调区间18.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.19.在平面直角坐标系中,已知向量,,.(1)若,求的值;(2)若与的夹角为,求的值.20.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.21.设为等差数列的前项和,已知,.(1)求数列的通项公式;(2)令,且数列的前项和为,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由等比数列的性质,仍是等比数列,先由是等比数列求出,再由是等比数列,可得.【详解】由题得,成等比数列,则有,,解得,同理有,,解得.故选:A【点睛】本题考查等比数列前n项和的性质,这道题也可以先由求出数列的首项和公比q,再由前n项和公式直接得。2、D【解析】
对于含变量的直线问题可采用赋特殊值法进行求解【详解】因为所以点到中每条直线的距离即为圆的全体切线组成的集合,所以存在圆心在,半径大于1的圆与中所有直线相交,A正确也存在圆心在,半径小于1的圆与中所有直线均不相交,B正确也存在圆心在半径等于1的圆与中所有直线相切,C正确故正确因为中的直线与以为圆心,半径为1的圆相切,所以中的直线所能围成的正三角形面积不都相等,如图
与
均为等边三角形而面积不等,故错误,答案选D.【点睛】本题从点到直线的距离关系出发,考查了圆的切线与圆的位置关系,解决此类题型应学会将条件进行有效转化.3、C【解析】
将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【详解】由得:即,解得:或本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.4、D【解析】略5、B【解析】
给出具体角度,可以得到终边相同角的表达式.【详解】角终边相同的角可以表示为,当时,,所以答案选择B【点睛】判断两角是否是终边相同角,即判断是否相差整数倍.6、D【解析】
根据向量的加法与减法的运算法则,即可求解,得到答案.【详解】由题意,根据向量的运算法则,可得=++==,故选D.【点睛】本题主要考查了向量的加法与减法的运算法则,其中解答中熟记向量的加法与减法的运算法则,准确化简、运算是解答的关键,着重考查了运算与求解能力,属于基础题.7、D【解析】
直接用作差法比较它们的大小得解.【详解】;;.故.故选:D【点睛】本题主要考查了作差法比较实数的大小,意在考查学生对这些知识的理解掌握水平,属于基础题.8、D【解析】
把系数2提取出来,即即可得结论.【详解】,因此要把图象向右平移个单位.故选D.【点睛】本题考查三角函数的图象平移变换.要注意平移变换是加减平移单位,即向右平移个单位得图象的解析式为而不是.9、A【解析】
设原来的圆锥底面半径为r,高为h,可得出变化后的圆锥的底面半径为12r,高为【详解】设原来的圆锥底面半径为r,高为h,该圆锥的体积为V=1变化后的圆锥底面半径为12r,高为该圆锥的体积为V'=1故选:A.【点睛】本题考查圆锥体积的计算,考查变化后的圆锥体积的变化,解题关键就是圆锥体积公式的应用,考查计算能力,属于中等题.10、C【解析】∵,∴,又,∴,又为三角形的内角,所以,故。选C。二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.12、【解析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.13、2【解析】
根据等比数列的性质与基本量法求解即可.【详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【点睛】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.14、【解析】
运用数列的递推式即可得到数列通项公式.【详解】数列的前项和,当时,得;当时,;综上可得故答案为:【点睛】本题考查数列的通项与前项和的关系,考查分类讨论思想的运用,求解时要注意把通项公式写成分段的形式.15、【解析】
由题设可得知该函数的最小正周期是,令,则由等差数列的定义可知数列是首项为,公差为的等差数列,即,由此可得,将以上个等式两边相加可得,即,所以,故,应填答案.点睛:解答本题的关键是借助题设中提供的数列递推关系式,先求出数列的通项公式,然后再运用列项相消法求出,最后借助题设中提供的新信息,求出使得问题获解.16、【解析】
根据数列极限的方法求解即可.【详解】由题,故.又.故.故.故答案为:【点睛】本题主要考查了数列极限的问题,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(x)的最小正周期为π,最大值为;(2)f(x)在上单调递增;在上单调递减.【解析】
(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得的最小正周期和最大值.(2)根据,利用正弦函数的单调性,即可求得在上的单调区间.【详解】解:(1)函数,即故函数的周期为,最大值为.(2)当时,,故当时,即时,为增函数;当时,即时,为减函数;即函数在上单调递增;在上单调递减.【点睛】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.18、(1)(2)【解析】
(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式恒成立,①当时,显然成立,所以时,不等式恒成立;②当时,只需,解得,综上所述,实数的取值范围为.(2)要使对于恒成立,只需恒成立,只需,又因为,只需,令,则只需即可因为,当且仅当,即时等式成立;因为,所以,所以.【点睛】本题主要考查了含参数的不等式的恒成立问题的求解,其中解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及转化思想的应用,属于基础题.19、(1)1(2)【解析】
(1).若,则,结合三角函数的关系式即可求的值;
(2).若与的夹角为,利用向量的数量积的坐标公式进行求解即可求的值.【详解】(1)由,则即,所以所以(2),又与的夹角为,则即即由,则所以,即【点睛】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,属于基础题.20、(1)见解析;(2)5;(3)见解析【解析】试题分析:(1)分离系数m,求解方程组可得直线恒过定点;(2)结合(1)的结论可得点到直线的距离的最大值是5;(3)由题意得到面积函数:,注意等号成立的条件.试题解析:(1)证明:直线方程可化为该方程对任意实数恒成立,所以解得,所以直线恒过定点(2)点与定点间的距离,就是所求点到直线的距离的最大值,即(3)由于直线过定点,分别与轴,轴的负半轴交于两点,设其方程为,则所以当且仅当时取等号,面积的最小值为4此时直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湟中县幼儿园教师招教考试备考题库含答案解析(必刷)
- 2025年山西艺术职业学院单招职业技能考试题库附答案解析
- 2025年榕江县幼儿园教师招教考试备考题库附答案解析
- 2025年南漳县幼儿园教师招教考试备考题库带答案解析
- 2025年河北外国语学院马克思主义基本原理概论期末考试模拟题附答案解析(必刷)
- 2026年厦门东海职业技术学院单招职业倾向性测试模拟测试卷带答案解析
- 2025年山西电力职业技术学院单招职业适应性考试题库带答案解析
- 2025年绥江县招教考试备考题库含答案解析(夺冠)
- 2025年唐河县招教考试备考题库带答案解析(夺冠)
- 2026年天津公安警官职业学院单招职业技能考试模拟测试卷附答案解析
- 2026年服装连锁店库存管理与清仓策略
- 电气故障排查与处理技巧
- 2025医疗器械安全和性能基本原则清单
- 2025-2026学年外研版(三年级起点)六年级英语上学期必刷常考题之阅读理解
- 2025初中英语词汇3500词汇表
- 2025年石油钻井井下工具行业分析报告及未来发展趋势预测
- 医院培训课件:《基层高血压管理指南-高血压药物治疗方案》
- 保护江安河保护江安河
- 钻探施工安全培训课件
- 初中语法每日小纸条【空白版】
- 排水管网日常巡检管理方案
评论
0/150
提交评论