版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省名校联盟高一数学第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在上存在最小值的是()A. B. C. D.2.已知函数满足下列条件:①定义域为;②当时;③.若关于x的方程恰有3个实数解,则实数k的取值范围是A. B. C. D.3.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角4.下列大小关系正确的是()A.B.C.D.5.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”6.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦矢+矢矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为,弦长为米的弧田,其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米(其中,)A.14 B.16 C.18 D.207.设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]8.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是()A.中位数为14 B.众数为13 C.平均数为15 D.方差为199.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽丈,长丈;上棱长丈,无宽,高丈(如图).问它的体积是多少?”这个问题的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈10.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.________12.数列中,若,,则______;13.在中,若,则____;14.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强。15.若满足约束条件则的最大值为__________.16.如图,正方形中,分别为边上点,且,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若关于的不等式的解集为,求的值;(2)若对任意恒成立,求的取值范围.18.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.19.是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为,,,,).(1)求选取的市民年龄在内的人数;(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.20.已知向量,,函数.(1)若,求的取值集合;(2)当时,不等式恒成立,求的取值范围.21.如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.(1)求证:直线平面;(2)求直线与平面所成角的余弦值;(3)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
结合初等函数的单调性,逐项判定,即可求解,得到答案.【详解】由题意,函数,当时,取得最小值,满足题意;函数在为单调递增函数,所以函数在区间无最小值,所以B不正确;函数在为单调递增函数,所以函数在区间无最小值,所以C不正确;函数在为单调递增函数,所以函数在区间无最小值,所以D不正确.故选:A.【点睛】本题主要考查了函数的最值问题,其中解答中熟记基本初等函数的单调性,合理判定是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】
分析:先根据条件确定函数图像,再根据过定点(1,0)的直线与图像关系确定实数k的取值范围.详解:因为,当时;所以可作函数在上图像,如图,而直线过定点A(1,0),根据图像可得恰有3个实数解时实数k的取值范围为,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.3、D【解析】
根据象限角写出的取值范围,讨论即可知在第一或第三象限角【详解】依题意得,则,当时,是第一象限角当时,是第三象限角【点睛】本题主要考查象限角,属于基础题.4、C【解析】试题分析:因为,,,所以。故选C。考点:不等式的性质点评:对于指数函数和对数函数,若,则函数都为增函数;若,则函数都为减函数。5、A【解析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【点睛】本题考查了互斥事件的定义.是基础题.6、B【解析】
根据题意画出图形,结合图形求出扇形的面积与三角形的面积,计算弓形的面积,再利用弧长公式计算弧田的面积,求两者的差即可.【详解】如图所示,扇形的半径为,所以扇形的面积为,又三角形的面积为,所以弧田的面积为,又圆心到弦的距离等于,所示矢长为,按照上述弧田的面积经验计算可得弦矢矢,所以两者的差为.故选:B.【点睛】本题主要考查了扇形的弧长公式和面积公式的应用,以及我国古典数学的应用问题,其中解答中认真审题,合理利用扇形弧长和面积公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7、B【解析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即,易知直线在轴上的截距最大时,目标函数取得最小值;在轴上的截距最小时,目标函数取得最大值,即在点处取得最小值,为;在点处取得最大值,为.故的取值范围是[–3,2].所以选B.【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.8、D【解析】从题设中所提供的茎叶图可知六个数分别是,所以其中位数是,众数是,平均数,方差是,应选答案D.9、A【解析】过点分别作平面和平面垂直于底面,所以几何体的体积分为三部分中间是直三棱柱,两边是两个一样的四棱锥,所以立方丈,故选A.10、A【解析】
设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【点睛】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据极限的运算法则,合理化简、运算,即可求解.【详解】由极限的运算,可得.故答案为:【点睛】本题主要考查了极限的运算法则的应用,其中解答熟记极限的运算法则,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
先分组求和得,再根据极限定义得结果.【详解】因为,,……,,所以则.【点睛】本题考查分组求和法、等比数列求和、以及数列极限,考查基本求解能力.13、【解析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.14、乙【解析】由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.15、【解析】
作出可行域,根据目标函数的几何意义可知当时,.【详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【点睛】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.16、(或)【解析】
先设,根据题意得到,再由两角和的正切公式求出,得到,进而可得出结果.【详解】设,则所以,所以,因此.故答案为【点睛】本题主要考查三角恒等变换的应用,熟记公式即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)不等式可化为,而解集为,可利用韦达定理或直接代入即可得到答案;(2)法一:讨论和时,分离参数利用均值不等式即可得到取值范围;法二:利用二次函数在上大于等于0恒成立,即可得到取值范围.【详解】(1)法一:不等式可化为,其解集为,由根与系数的关系可知,解得,经检验时满足题意.法二:由题意知,原不等式所对应的方程的两个实数根为和4,将(或4)代入方程计算可得,经检验时满足题意.(2)法一:由题意可知恒成立,①若,则恒成立,符合题意。②若,则恒成立,而,当且仅当时取等号,所以,即.故实数的取值范围为.法二:二次函数的对称轴为.①若,即,函数在上单调递增,恒成立,故;②若,即,此时在上单调递减,在上单调递增,由得.故;③若,即,此时函数在上单调递减,由得,与矛盾,故不存在.综上所述,实数的取值范围为.【点睛】本题主要考查一元二次不等式的性质,不等式恒成立中含参问题,意在考查学生的分析能力,计算能力及转化能力,难度较大.18、(1);(2)或【解析】
(1)由辅助角公式可得,再求周期即可;(2)由求出,再解方程即可.【详解】解:(1),则的最小正周期为.(2)因为,所以,即,解得.因为,所以.因为,所以,即,则或,解得或.故当时,自变量的取值集合为或.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.19、(1)30人;(2).【解析】
(1)由频率分布直方图,先求出年龄在内的频率,进而可求出人数;(2)先由分层抽样,确定应从第3,4组中分别抽取3人,2人,记第3组的3名志愿者分别为,第4组的2名志愿者分别为,再用列举法,分别列举出总的基本事件,以及满足条件的基本事件,基本事件个数比即为所求概率.【详解】(1)由题意可知,年龄在内的频率为,故年龄在内的市民人数为.(2)易知,第4组的人数为,故第3,4组共有50名市民,所以用分层抽样的方法在50名志愿者中抽取5名志愿者,每组抽取的人数分别为:第3组;第4组.所以应从第3,4组中分别抽取3人,2人.记第3组的3名志愿者分别为,第4组的2名志愿者分别为,则从5名志愿者中选取2名志愿者的所有情况为,,,,,,,,,,共有10种.其中第4组的2名志愿者至少有一名志愿者被选中的有:,,,,,,,共有7种,所以至少有一人的年龄在内的概率为.【点睛】本题主要考查由频率分布直方图求频数,以及古典概型的概率问题,会分析频率分布直方图,熟记古典概型的概率计算公式即可,属于常考题型.20、(1)或;(2).【解析】
(1)由题化简得.再解方程即得解;(2)由题得在上恒成立,再求不等式右边函数的最小值即得解.【详解】解:(1)因为,,所以.因为,所以.解得或.故的取值集合为.(2)由(1)可知,所以在上恒成立.因为,所以,所以在上恒成立.设,则.所以.因为,所以,所以.故的取值范围为.【点睛】本题主要考查三角恒等变换和解三角方程,考查三角函数最值的求法和恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年射阳县幼儿园教师招教考试备考题库含答案解析(必刷)
- 2024年湖北水利水电职业技术学院马克思主义基本原理概论期末考试题及答案解析(夺冠)
- 2025年江苏开放大学马克思主义基本原理概论期末考试模拟题及答案解析(夺冠)
- 2025年丘北县招教考试备考题库带答案解析(必刷)
- 2025年蓝田县招教考试备考题库附答案解析(必刷)
- 2024年许昌县幼儿园教师招教考试备考题库附答案解析(夺冠)
- 2026年保定电力职业技术学院单招职业倾向性考试模拟测试卷带答案解析
- 2025年萧县招教考试备考题库及答案解析(夺冠)
- 2025年宁都县招教考试备考题库含答案解析(夺冠)
- 2026年乌兰察布职业学院单招职业适应性考试题库附答案解析
- GJB297B-2020钝化黑索今规范
- 2025年士兵军考试题及答案
- 电厂重要阀门管理制度
- 西方乐理与其他乐理对比试题及答案
- 2025 教育科技公司岗位职责与组织体系
- T-CALC 005-2024 急诊患者人文关怀规范
- 河埒街道社区卫生服务中心异地改建项目报告表
- 垃圾处理设备维修合同
- 2024辽宁省建设工程施工合同范本
- 2024仁爱版初中英语单词表(七-九年级)中考复习必背
- 声学低压细水雾灭火系统技术规范
评论
0/150
提交评论