版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省汉川市第二中学高一下数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()A. B. C. D.2.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差3.已知,且,,则()A. B. C. D.4.已知函数f(x)满足:f(x)=-f(-x),且当x∈(-∞,0]时,成立,若则a,b,c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a5.利用随机模拟方法可估计无理数π的数值,为此设计右图所示的程序框图,其中rand()表示产生区间(0,1)上的随机数,P是s与n的比值,执行此程序框图,输出结果P的值趋近于()A.π B.π4 C.π26.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.7.已知向量,,,的夹角为45°,若,则()A. B. C.2 D.38.平面平面,直线,,那么直线与直线的位置关系一定是()A.平行 B.异面 C.垂直 D.不相交9.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或910.同时抛掷两个骰子,则向上的点数之和是的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的公差为2,若成等比数列,则________.12.在半径为的球中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是__________.13.等比数列中前n项和为,且,,,则项数n为____________.14.平面⊥平面,,,,直线,则直线与的位置关系是___.15.设,,,若,则实数的值为______16.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.18.已知点,圆.(1)求过点的圆的切线方程;(2)若直线与圆相交于、两点,且弦的长为,求的值.19.已知分别是的三个内角所对的边.(1)若的面积,求的值;(2)若,且,试判断的形状.20.已知的内角A,B,C所对的边分别为a,b,c,且.(1)若,求的值;(2)若,求b,c的值.21.已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用弧长公式列出方程直接求解,即可得到答案.【详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D.【点睛】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题.2、A【解析】
可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.3、C【解析】
根据同角公式求出,后,根据两角和的正弦公式可得.【详解】因为,所以,因为,所以.因为,所以,因为,所以.所以.故选:C【点睛】本题考查了同角公式,考查了两角和的正弦公式,拆解是解题关键,属于中档题.4、B【解析】
根据已知条件判断出函数的奇偶性,利用构造函数法,结合已知条件,判断出的单调性,结合的奇偶性比较出的大小关系.【详解】由于,所以为奇函数.构造函数,依题意,当时,,所以在区间上递减.由于,所以为偶函数,故在上递增..,.由于,所以.故选:B【点睛】本小题主要考查函数的奇偶性和单调性,考查构造函数法判断函数的单调性,考查比较大小的方法,属于中档题.5、B【解析】
根据程序框图可知由几何概型计算出x,y任取(0,1)上的数时落在x2【详解】解:根据程序框图可知P为频率,它趋近于在边长为1的正方形中随机取一点落在扇形内的的概率π×故选:B【点睛】本题考查的知识点是程序框图,根据已知中的程序框图分析出程序的功能,并将问题转化为几何概型问题是解答本题的关键,属于基础题.6、A【解析】
分类,按在正方形的四条边上分别求解.【详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【点睛】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.7、C【解析】
利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.8、D【解析】
利用空间中线线、线面、面面的位置关系得出直线与直线没有公共点.【详解】由题平面平面,直线,则直线与直线的位置关系平行或异面,即两直线没有公共点,不相交.故选D.【点睛】本题考查空间中两条直线的位置关系,属于简单题.9、C【解析】
利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。10、C【解析】
由题意可知,基本事件总数为,然后列举出事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率.【详解】同时抛掷两个骰子,共有个基本事件,事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件有:、、、、,共个基本事件.因此,所求事件的概率为.故选:C.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..12、【解析】
根据正四棱柱外接球半径的求解方法可得到正四棱柱底面边长和高的关系,利用基本不等式得到,得到侧面积最大值为;根据球的表面积公式求得球的表面积,作差得到结果.【详解】设球内接正四棱柱的底面边长为,高为则球的半径:正四棱柱的侧面积:球的表面积:当正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差为:本题正确结果:【点睛】本题考查多面体的外接球的相关问题的求解,关键是能够根据外接球半径构造出关于正棱柱底面边长和高的关系式,利用基本不等式求得最值;其中还涉及到球的表面积公式的应用.13、6【解析】
利用等比数列求和公式求得,再利用通项公式求解n即可【详解】,代入,,得,又,得.故答案为:6【点睛】本题考查等比数列的通项公式及求和公式的基本量计算,熟记公式准确计算是关键,是基础题14、【解析】
利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【点睛】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.15、【解析】
根据题意,可以求出,根据可得出,进行数量积的坐标运算即可求出的值.【详解】故答案为:【点睛】本题考查向量垂直的坐标表示,属于基础题.16、【解析】
由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【点睛】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)首先证明平面,由平面平面,可说明,由此可得四边形为平行四边形,即可证明平面;(2)延长交于点,过点作交直线于点,则即为二面角的平面角,求出的余弦值即可得到答案.【详解】(1)∵为矩形∴,平面,平面∴平面.又因为平面平面,∴.为中点,为中点,所以平行且等于,即四边形为平行四边形所以,平面,平面所以平面(2)不妨设,.因为为中点,为等边三角形,所以,,且∵,所以有平面,故因为平面平面∴平面,又,∴平面,则延长交于点,过点作交直线于点,由于平行且等于,所以为中点,,由于,,,所以平面,则,所以即为二面角的平面角在中,,,所以,所以.【点睛】本题考查线面平行的证明,以及二面角的余弦值的求法,考查学生空间想象能力,计算能力,由一定综合性.18、(1)或;(2)【解析】分析:(1)根据点到直线的距离等于半径进行求解即可,注意分直线斜率不存在和斜率存在两种情况;(2)根据直线和圆相交时的弦长公式进行求解.详解:(1)由圆的方程得到圆心,半径,当直线斜率不存在时,方程与圆相切,当直线斜率存在时,设方程为,即,由题意得:,解得,∴方程为,即,则过点的切线方程为或.(2)∵圆心到直线的距离为,∴,解得:.点睛:本题主要考查直线和圆的位置关系的应用,根据直线和圆相切和相交时的弦长公式是解决本题的关键.19、(1);(2)等腰直角三角形.【解析】试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化.首先根据面积公式解出b边,得,再由由余弦定理得:,所以,(2)判断三角形形状,利用边的关系比较直观.因为,所以由余弦定理得:,所以,在中,,所以,所以是等腰直角三角形.解:(1),2分,得3分由余弦定理得:,5分所以6分(2)由余弦定理得:,所以9分在中,,所以11分所以是等腰直角三角形;12分考点:正余弦定理20、(1);(2)【解析】
(1)先求出,再利用正弦定理可得结果;(2)由求出,再利用余弦定理解三角形.【详解】(1)∵,且,∴,由正弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届北京市徐悲鸿中学生物高一下期末经典试题含解析
- 2025年应聘执行经纪人面试题库及答案
- 2025年大四校招国企笔试及答案
- 2025年万达市场营销面试题库及答案
- 2025年福州聚春园财务笔试及答案
- 2025年应聘资源管理员面试题库及答案
- 2025年内招免笔试面试及答案
- 2025年榆林医疗定向笔试题目及答案
- 2025年桂林师范学院马克思主义基本原理概论期末考试模拟题附答案解析(夺冠)
- 2025年井陉县招教考试备考题库及答案解析(必刷)
- 2026中考英语时文热点:跨学科融合阅读 练习(含解析)
- 《筑牢安全防线 欢度平安寒假》2026年寒假安全教育主题班会课件
- (2025年)吉林事业单位考试真题附答案
- 黄斑变性教学课件
- 《患者身份识别管理标准》测试题及答案
- 2026年微型泵行业报告
- 设备双主人管理办法
- GJB5714A-2023外购产品质量监督要求
- 湖北省国土资源研究院-湖北省2025年度城市地价动态监测报告
- 测绘成果保密自查报告
- 丁华野教授:下卷:提示为叶状肿瘤的形态学改变
评论
0/150
提交评论