版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市石门一中2026届数学高一下期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天2.如图是一个正四棱锥,它的俯视图是()A. B.C. D.3.变量满足,目标函数,则的最小值是()A. B.0 C.1 D.-14.已知命题,则命题的否定为()A. B.C. D.5.设,则“数列为等比数列”是“数列满足”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件6.若,则的概率为()A. B. C. D.7.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n8.“”是“”成立的()A.充分非必要条件. B.必要非充分条件.C.充要条件. D.既非充分又非必要条件.9.若直线与直线平行,则的值为A. B. C. D.10.已知β为锐角,角α的终边过点(3,4),sin(α+β)=,则cosβ=()A. B. C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.圆与圆的公共弦长为________.12.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.13.在上,满足的的取值范围是______.14.已知函数,若,则的取值围为_________.15.若数列的首项,且(),则数列的通项公式是__________.16.观察下列等式:(1);(2);(3);(4),……请你根据给定等式的共同特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是__________________.(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,边长为2的正方形中,(1)点是的中点,点是的中点,将分别沿折起,使两点重合于点.求证:(2)当时,求三棱锥的体积.18.某地区某农产品的销售量与年份有关,下表是近五年的部分统计数据:年份20102012201420162018销售量(吨)114115116116114用所给数据求年销售量(吨)与年份之间的回归直线方程,并根据所求出的直线方程预测该地区2019年该农产品的销售量.参考公式:.19.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:;(2)若,,,试画出二面角的平面角,并求它的余弦值.20.在中,已知,,且,求.21.在正方体中.(1)求证:;(2)是中点时,求直线与面所成角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.利用等比数列的前n项和公式及其对数的运算性质即可得出..【详解】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.则An,Bn,由题意可得:,化为:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估计2.3日蒲、莞长度相等,故选:A.【点睛】本题考查了等比数列的通项公式与求和公式在实际中的应用,考查了推理能力与计算能力,属于中档题.2、D【解析】
根据正四棱锥的特征直接判定即可.【详解】正四棱锥俯视图可以看到四条侧棱与顶点,且整体呈正方形.故选:D【点睛】本题主要考查了正四棱锥的俯视图,属于基础题.3、D【解析】
先画出满足条件的平面区域,将变形为:,平移直线得直线过点时,取得最小值,求出即可.【详解】解:画出满足条件的平面区域,如图示:
由得:,
平移直线,显然直线过点时,最小,
由,解得:
∴最小值,
故选:D.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.4、C【解析】
根据全称命题的否定是特称命题,可直接得出结果.【详解】命题“”的否定是“”.故选C【点睛】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.5、A【解析】
“数列为等比数列”,则,数列满足.反之不能推出,可以举出反例.【详解】解:“数列为等比数列”,则,数列满足.充分性成立;反之不能推出,例如,数列满足,但数列不是等比数列,即必要性不成立;故“数列为等比数列”是“数列满足”的充分非必要条件故选:.【点睛】本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.6、C【解析】
由,得,当时,即可求出的范围,根据几何概型的公式,即可求解.【详解】由,得,当,即当时,,所以的概率为.【点睛】本题考查几何概型的公式,属基础题7、A【解析】
依据立体几何有关定理及结论,逐个判断即可。【详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【点睛】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。8、A【解析】
依次分析充分性与必要性是否成立.【详解】时,而时不一定成立,所以“”是“”成立的充分非必要条件,选A.【点睛】本题考查充要关系判定,考查基本分析判断能力,属基础题9、C【解析】试题分析:由两直线平行可知系数满足考点:两直线平行的判定10、B【解析】
由题意利用任意角的三角函数的定义求得sinα和cosα,再利用同角三角函数的基本关系求得cos(α+β)的值,再利用两角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【详解】β为锐角,角α的终边过点(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β为钝角,∴cos(α+β),则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα••,故选B.【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求出公共弦方程为,再求出弦心距后即可求解.【详解】两圆方程相减可得公共弦直线方程为,圆的圆心为,半径为,圆心到的距离为,公共弦长为.故答案为:.【点睛】本题考查了圆的一般方程以及直线与圆位置关系的应用,属于基础题.12、【解析】
如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.13、【解析】
由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.14、【解析】
由函数,根据,得到,再由,得到,结合余弦函数的性质,即可求解.【详解】由题意,函数,又由,即,即,因为,则,所以或,即或,所以实数的取值围为.故答案为:.【点睛】本题主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟练应用余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】,得(),两式相减得,即(),,得,经检验n=1不符合。所以,16、【解析】
观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【点睛】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】试题分析:(1)由题意,,∴,∴.(2)把当作底面,因为角=90°,所以为高;过作H垂直于EF,H为EF中点(等腰三角形三线合一);BE=BF=BC,;,,,.考点:折叠问题,垂直关系,体积计算.点评:中档题,对于折叠问题,要特别注意“变”与“不变”的几何元素,及几何元素之间的关系.本题计算几何体体积时,应用了“等体积法”,简化了解题过程.18、;115.25吨【解析】
由表格中的数据先求出,再根据公式求得与的值,得到线性回归方程,取即可求得2019年该农产品销售量的预测值.【详解】由表中数据可得:,,∴,,∴所求回归直线方程为:,由此可以预测2019年该农产品的销售量为:吨.【点睛】本题考查线性回归方程的求法,考查计算能力,难度不大.19、(1)见证明;(2)二面角图见解析;【解析】
(1)由菱形的性质得出,由平面,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;(2)过点在平面内作,垂足为点,连接,可证出平面,于是找出二面角的平面角为,并计算出的三边边长,利用锐角三角函数计算出,即为所求答案.【详解】(1)连接,因为侧面为菱形,所以,且与相交于点.因为平面,平面,所以.又,所以平面因为平面,所以.(2)作,垂足为,连结,因为,,,所以平面,又平面,所以.所以是二面角的平面角.因为,所以为等边三角形,又,所以,所以.因为,所以.所以.在中,.【点睛】本题考查直线与直线垂直的证明,二面角的求解,在这些问题的处理中,主要找出一些垂直关系,二面角的求解一般有以下几种方法:①定义法;②三垂线法;③垂面法;④射影面积法;⑤空间向量法.在求解时,可以灵活利用这些方法去处理.20、或【解析】
首先根据三角形面积公式求出角B的正弦值,然后利用平方关系,求出余弦值,再依据余弦定理即可求出.【详解】由得,,所以或,由余弦定理有,,故或,即或.【点睛】本题主要考三角形面积公式、同角三角函数基本关系的应用,以及利用余弦定理解三角形.21、(1)见解析;(2).【解析】
(1)连接,证明平面,进而可得出;(2)连接、、,设,过点在平面内作,垂足为点,连接,设,则角和均为直线与平面所成的角,从而可得出,即可求出所求角.【详解】(1)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 短兵课件教学课件
- 2026年能源管理策略节能减排技术模拟题
- 2026年大数据技术基础与应用实践考试题
- 2026年医学基础知识与临床实践能力测试
- 2026年国家司法考试法学理论与应用实务综合题库
- 2026年中医药知识竞赛题目及解析
- 2026年中医药基础理论知识应用考试题
- 2026年物流管理师专业能力测试题集
- 2026年体育竞技规则与运动技能考试题集
- 2026年生物医学基础概念模拟自测题
- 2026年东营职业学院单招综合素质笔试参考题库含详细答案解析
- 四川省泸州市2025-2026学年高一上学期期末质量监测化学试卷
- 初高中生物知识衔接课件
- 2024年风电、光伏项目前期及建设手续办理流程汇编
- 迈瑞售后管理制度规范
- 2026年护理质控工作计划
- 2025天津市水务规划勘测设计有限公司招聘18人笔试历年参考题库附带答案详解
- 皇家加勒比游轮介绍
- 胰腺常见囊性肿瘤的CT诊断
- 检测设备集成优化方案
- 煤矿春节后复工安全培训课件
评论
0/150
提交评论