版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市师范大学附属中学2025-2026学年高三下学期第五次月考数学试题试卷试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是()A. B.3 C. D.2.已知集合,则集合真子集的个数为()A.3 B.4 C.7 D.83.已知为等比数列,,,则()A.9 B.-9 C. D.4.已知i为虚数单位,则()A. B. C. D.5.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.7.已知函数满足,且,则不等式的解集为()A. B. C. D.8.()A. B. C. D.9.命题“”的否定是()A. B.C. D.10.若等差数列的前项和为,且,,则的值为().A.21 B.63 C.13 D.8411.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.12.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“-”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15二、填空题:本题共4小题,每小题5分,共20分。13.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.14.将函数的图象向左平移个单位长度,得到一个偶函数图象,则________.15.已知单位向量的夹角为,则=_________.16.设函数,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线交于M,N,线段MN的中点为E.①求证:;②记,,的面积分别为、、,求证:为定值.18.(12分)在中,内角的对边分别是,已知.(1)求的值;(2)若,求的面积.19.(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.20.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.22.(10分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或..故选:.本题考查直线与方程,考查平面内两点间距离公式,属于中档题.2.C【解析】
解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.3.C【解析】
根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.4.A【解析】
根据复数乘除运算法则,即可求解.【详解】.故选:A.本题考查复数代数运算,属于基础题题.5.A【解析】
计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.本题考查了复数的计算,意在考查学生的计算能力和理解能力.6.C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.7.B【解析】
构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.8.A【解析】
分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A本题考查复数的除法运算,属于基础题.9.D【解析】
根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,.故选D.本题考查全称命题的否定,难度容易.10.B【解析】
由已知结合等差数列的通项公式及求和公式可求,,然后结合等差数列的求和公式即可求解.【详解】解:因为,,所以,解可得,,,则.故选:B.本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题.11.D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.12.B【解析】
由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.故选:B.本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13.20【解析】
由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.【详解】由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆柱组合而成,其体积为.故答案为:20.本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.14.【解析】
根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称即:本题正确结果:本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.15.【解析】
因为单位向量的夹角为,所以,所以==.16.【解析】
由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:本题考查分段函数求值,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)①证明见解析;②证明见解析【解析】
(1)解方程即可;(2)①设直线,,,将点的坐标用表示,证明即可;②分别用表示,,的面积即可.【详解】(1)解之得:的标准方程为:(2)①,,设直线代入椭圆方程:设,,,直线,直线,,,,,.②,所以.本题考查了直接法求椭圆的标准方程、直线与椭圆位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.18.(1);(2).【解析】
(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,,利用三角形内角和定理可得,由三角形面积公式可得结果.【详解】(1)由题意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.19.(1)(2)见解析,最小值为4【解析】
(1)根据焦点到直线的距离列方程,求得的值,由此求得抛物线的方程.(2)设出的坐标,利用导数求得切线的方程,由此判断出直线恒过抛物线焦点.求得三角形面积的表达式,进而求得面积的最小值.【详解】(1)依题意,解得(负根舍去)∴抛物线的方程为(2)设点,由,即,得∴抛物线在点处的切线的方程为,即∵,∴∵点在切线上,①,同理,②综合①、②得,点的坐标都满足方程.即直线恒过抛物线焦点当时,此时,可知:当,此时直线直线的斜率为,得于是,而把直线代入中消去得,即:当时,最小,且最小值为4本小题主要考查点到直线的距离公式,考查抛物线方程的求法,考查抛物线的切线方程的求法,考查直线过定点问题,考查抛物线中三角形面积的最值的求法,考查运算求解能力,属于难题.20.(1)(2)分布列见解析,期望为20【解析】
利用相互独立事件概率公式求解即可;由题意知,随机变量可能的取值为0,10,20,30,分别求出对应的概率,列出分布列并代入数学期望公式求解即可.【详解】(1)由相互独立事件概率公式可得,(2)由题意知,随机变量可能的取值为0,10,20,30.,,,,所以,的概率分布列为0102030所以数学期望.本题考查相互独立事件概率公式和离散型随机变量的分布列及其数学期望;考查运算求解能力;确定随机变量可能的取值,求出对应的概率是求解本题的关键;属于中档题、常考题型.21.(1);(2)【解析】
(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参数),转换为直角坐标方程为.曲线的极坐标方程为.转换为,转换为直角坐标方程为.(2)直线的参数方程为(为参数),转换为标准式为(为参数),代入圆的直角坐标方程整理得,所以,..本题属于基础本题考查的知识要点:主要考查极坐标,参数方程与普通方程互化,及求三角形面积.需要熟记极坐标系与参数方程的公式,及与解析几何相关的直线与曲线位置关系的一些解题思路.22.(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析【解析】
(1)由题知|PF1|+|PF2|2|F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖南常德事业编考试题目及答案
- 2025年泰西教师编笔试及答案
- 2025年马鞍山学院马克思主义基本原理概论期末考试模拟题带答案解析(夺冠)
- 2025年心血管科结构化面试题库及答案
- 2025年六盘水留置看护人员笔试及答案
- 2025年天弘基金设计师面试题库及答案
- 2025年台企高层面试题库答案
- 2025年事业单位计算机知识考试及答案
- 2025年军人在部队每年要笔试及答案
- 2024年重庆机电职业技术大学马克思主义基本原理概论期末考试题带答案解析(必刷)
- 2026年服装连锁店库存管理与清仓策略
- 2025年石油钻井井下工具行业分析报告及未来发展趋势预测
- 医院培训课件:《基层高血压管理指南-高血压药物治疗方案》
- 保护江安河保护江安河
- 云南中考英语5年(21-25)真题分类汇编-中考题型完形填空
- 初中语法每日小纸条【空白版】
- 九年级历史下册必背章节知识清单(背诵版)
- (2025年标准)金矿收购协议书
- 湖南省先进制造业“揭榜挂帅”项目申报书+(科技成果转化类)
- 2026届陕西省西安市西工大附中达标名校中考物理模拟试题含解析
- 2025年南京市联合体九年级中考语文一模试卷附答案解析
评论
0/150
提交评论