版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省尤溪县2026届新高三开学考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则()A. B. C. D.2.已知向量,,则向量与的夹角为()A. B. C. D.3.设M是边BC上任意一点,N为AM的中点,若,则的值为()A.1 B. C. D.4.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.设,,,则()A. B. C. D.6.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是1037.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为A. B. C. D.8.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.9.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.11.一个几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.8412.已知向量满足,且与的夹角为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_____.14.若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有___________.(填上所有正确答案的序号)①,,;②,,;③,,;④,,.15.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.16.根据如图所示的伪代码,输出的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.18.(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量x(单位:亿元)对年销售额y(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中现该公司收集了近12年的年研发资金投入量xi和年销售额yi的数据,i=1,2,⋯,12,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)设ui和yi的相关系数为r1,xi和(2)(i)根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);(ii)若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?附:①相关系数r=i=1n(xi-x②参考数据:308=4×77,90≈9.4868,e19.(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.20.(12分)已知函数(为常数)(Ⅰ)当时,求的单调区间;(Ⅱ)若为增函数,求实数的取值范围.21.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线和圆的普通方程;(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.22.(10分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图.(1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【详解】作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为.故选:解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.2.C【解析】
求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.3.B【解析】
设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.4.A【解析】
根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可.【详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,,若,则数列为单调递减数列,则必存在,使得当时,,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,,合乎题意.所以,“,”“为递增数列”;必要性:设,当时,,此时,,但数列是递增数列.所以,“,”“为递增数列”.因此,“,”是“为递增数列”的充分而不必要条件.故选:A.本题主要考查充分条件和必要条件的判断,结合等差数列的前项和公式是解决本题的关键,属于中等题.5.A【解析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.6.D【解析】
计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【详解】由题意可得甲班的平均分是104,中位数是103,方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.7.D【解析】
如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,,,.在和中,由余弦定理得,整理解得.故选D.8.D【解析】
将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题9.C【解析】
讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,,由开口向上,则恒成立;当恒成立时,若,则不恒成立,不符合题意,若时,要使得恒成立,则,即.所以“”是“恒成立”的充要条件.故选:C.本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出是的充分条件;若,则推出是的必要条件.10.B【解析】
选B.考点:圆心坐标11.B【解析】
画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故.故选:.本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.12.A【解析】
根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.本题主要考查数量积的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.2.【解析】
由双曲线的一条渐近线为,解得.求出双曲线的右焦点,利用点到直线的距离公式求解即可.【详解】双曲线的一条渐近线为解得:双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题.14.①②④【解析】
由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对①,③,④都可以采用此法判断,对②分析式子特点可知,,进而判断【详解】①时,令,则,单调递增,,即.令,则,单调递减,,即,因此,满足题意.②时,易知,满足题意.③注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为,易知,,因此不存在直线满足题意.④时,注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:①②④本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题15.或【解析】
用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,,所以.联立解得或故双曲线的离心率为或.故答案为:或.本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.16.7【解析】
表示初值S=1,i=1,分三次循环计算得S=10>0,输出i=7.【详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=10>9,循环结束,输出:i=7.故答案为:7本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(I);(II)最大值为,最小值为.【解析】试题分析:(I)由椭圆的标准方程设,得椭圆的参数方程为,消去参数即得直线的普通方程为;(II)关键是处理好与角的关系.过点作与垂直的直线,垂足为,则在中,,故将的最大值与最小值问题转化为椭圆上的点,到定直线的最大值与最小值问题处理.试题解析:(I)曲线C的参数方程为(为参数).直线的普通方程为.(II)曲线C上任意一点到的距离为.则.其中为锐角,且.当时,取到最大值,最大值为.当时,取到最小值,最小值为.【考点定位】1、椭圆和直线的参数方程;2、点到直线的距离公式;3、解直角三角形.18.(1)模型y=eλx+t的拟合程度更好;(2)(i)v=0.02x+3.84【解析】
(1)由相关系数求出两个系数,比较大小可得;(2)(i)先建立U额R0关于x的线性回归方程,从而得出y(ii)把y=90代入(i)中的回归方程可得x值.【详解】本小题主要考查回归分析等基础知识,考查数据处理能力、运算求解能力、抽象概括能力及应用意识,考查统计与概率思想、分类与整合思想,考查数学抽象、数学运算、数学建模、数据分析等核心素养,体现基础性、综合性与应用性.解:(1)r1r2则r1<r(2)(i)先建立U额R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U额R0关于x所以lny=0.02x+3.84(ii)下一年销售额y需达到90亿元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以预测下一年的研发资金投入量约是32.99亿元本小题主要考查抛物线的定义、抛物线的标准方程、直线与抛物线的位置关系、导数几何意义等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等,考查数学运算、直观想象、逻辑推理等核心素养,体现基础性、综合性与应用性19.(1)证明见解析(2)证明见解析【解析】
(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知;,易知当时,,;当时,函数单调递增,而,又,由零点存在定理得,使得,,使得,有从而得证.【详解】(1)依题意,,因为,且,故,故函数在上单调递减,故.(2)依题意,,令,则;而,可知当时,,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,即函数单调递增,即单调递增;故当时,,故函数在上单调递减,在上单调递增,故当时,函数有极小值.本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.20.(Ⅰ)单调递增区间为,;单调递减区间为;(Ⅱ).【解析】
(Ⅰ)对函数进行求导,利用导数判断函数的单调性即可;(Ⅱ)对函数进行求导,由题意知,为增函数等价于在区间恒成立,利用分离参数法和基本不等式求最值即可求出实数的取值范围.【详解】(Ⅰ)由题意知,函数的定义域为,当时,,令,得,或,所以,随的变化情况如下表:递增递减递增的单调递增区间为,,单调递减区间为.(Ⅱ)由题意得在区间恒成立,即在区间恒成立.,当且仅当,即时等号成立.所以,所以的取值范围是.本题考查利用导数求函数的单调区间、利用分离参数法和基本不等式求最值求参数的取值范围;考查运算求解能力和逻辑推理能力;利用导数把函数单调性问题转化为不等式恒成立问题是求解本题的关键;属于中档题、常考题型.21.(1),;(2)【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年心理健康干预机制
- 社区服务规范与标准操作流程(标准版)
- 电力系统设备检修与试验操作手册(标准版)
- 项目管理与进度管理规范(标准版)
- 麻醉科文化建设与品牌塑造
- 麻醉设备更新与技术升级
- 2025 七年级道德与法治上册课堂互动的“观点共享”规则设计课件
- 椎旁阻滞临床应用与管理
- 旅行社旅游服务操作规范
- 2019年农村村组长述职述廉报告
- Python深度学习入门(从零构建CNN和RNN)
- 小学信息科技课堂中人工智能教育实践研究教学研究课题报告
- 2026年桥梁耐久性与设计初衷的关系
- 2026北京海淀初三上学期期末数学试卷和答案
- 设备拆除安全培训内容课件
- 慢性病患者医患沟通策略
- 老年人皮肤瘙痒的护理
- 饮用水深度处理技术研究
- 麻绳手工创意课件
- 病房急危重症患者抢救流程
- 非遗宋锦课件
评论
0/150
提交评论