




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2椭圆2.2.1椭圆及其标准方程,通过图片我们看到,在我们所生活的世界中,随处可见椭圆这种图形,而且我们也已经知道了椭圆的大致形状,那么我们能否动手画一个标准的椭圆呢?,1.了解椭圆的实际背景,感受椭圆在刻画现实世界和解决实际问题中的作用(重点)2掌握椭圆的定义,会求椭圆的标准方程.(重点、难点),探究点1椭圆的定义,根据刚才的实验请同学们回答下面几个题:1.在画椭圆的过程中,细绳的两端的位置是固定的还是运动的?2.在画椭圆的过程中,绳子的长度变了没有?说明了什么?,3.在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?,思考:结合实验,请同学们思考:椭圆是怎样定义的?,讨论:若把绳
2、长记为2a,两定点间的距离记为2c(c0).(1)当2a2c时,轨迹是;(2)当2a=2c时,轨迹是;(3)当2a0),M与F1和F2的距离的和等于2a(2a2c0).,请同学们自己完成剩下的步骤,求出椭圆的方程.,解:以焦点F1,F2的所在直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系xOy(如图).,设M(x,y)是椭圆上任意一点,椭圆的焦距为2c(c0),M与F1和F2的距离的和等于正常数2a(2a2c),则F1,F2的坐标分别是(c,0)、(c,0).,x,F1,F2,M,O,y,由椭圆的定义得,因为,移项,再平方,整理得,两边再平方,得,它表示焦点在y轴上的椭圆.,它
3、表示焦点在x轴上的椭圆.,1,2,y,o,F,F,M,x,椭圆的标准方程有哪些特征呢?,【提升总结】,图形,方程,焦点坐标、位置,F(c,0)在轴上,F(0,c)在轴上,a,b,c之间的关系,c2=a2-b2,P=M|MF1|+|MF2|=2a(2a2c0),定义,两类标准方程的对照表:,注:,哪个分母大,焦点就在相应的哪条坐标轴上!,判定下列椭圆的焦点在哪个轴上,并指明a2、b2,并写出焦点坐标,答:在x轴。(-3,0)和(3,0),答:在y轴。(0,-5)和(0,5),分析:椭圆标准方程的焦点在分母大的那个轴上。,练一练:,随堂练习,例1.椭圆的焦点坐标是()A.(5,0)B(0,5)C(
4、0,12)D(12,0)例2.椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为()A.5B.6C.4D.10,A,C,作业,课本p64练习11、3,例1已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点.求它的标准方程.,解:因为椭圆的焦点在x轴上,所以设它的标准方程为,由椭圆的定义知,又因为,所以,因此,所求椭圆的标准方程为,所以,能用其他方法求它的方程吗?,另解:因为椭圆的焦点在x轴上,所以设它的标准方程为:,联立,因此,所求椭圆的标准方程为:,又焦点的坐标为,【变式练习】,已知椭圆经过两点和,求椭圆的标准方程.,解:设椭圆的标准方程为,则有,解得,所以,所求椭圆的
5、标准方程为.,x,y,O,D,M,P,例2如图,在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?,解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则,因为点P(x0,y0)在圆,把点0=x,y0=2y代入方程,得,即,所以点M的轨迹是一个椭圆.,从例2你能发现椭圆与圆之间的关系吗?,例3如图,设点A,B的坐标分别是(-5,0)和(5,0),直线AM,BM相交于点M,且它们的斜率之积是,求点M的轨迹方程.,y,A,x,M,B,O,解:设点M的坐标(x,y),因为点A的坐标是(-5,0),所以,直线AM的斜率为,同理,直线B
6、M的斜率,由已知有,化简,得点M的轨迹方程为,1.已知F1,F2是椭圆的两个焦点,过F1的直线交椭圆于M,N两点,则三角形MNF2的周长为()A.10B.20C.30D.40,B,D,2.椭圆的长轴是短轴的3倍,且过点A(3,0),则椭圆的标准方程是_.答案:,3.已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4m,外轮廓线上的点到两个焦点的距离和为3m,求这个椭圆的标准方程.,解:以两个焦点F1,F2所在的直线为x轴,以线段F1F2的垂直平分线为y轴,建立直角坐标系,则这个椭圆的标准方程为,根据题意知,2a=3,2c=2.4,即a=1.5,c=1.2.所以b2=a2-c2=1.52-1.22=0.81,因此椭圆的标准方程为,定义,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 19361:2025 EN Measurement of radioactivity - Determination of beta emitters activities - Test method using liquid scintillation counting
- 生物化学(第4版)课件 第13章 肝的生物化学
- 职业教育商业计划书
- 体表肿物常规护理与术后管理
- 题目的作用教学课件
- 机关单位工作人员心理健康促进策略
- 儿童营养与健康解决对策
- 肋骨骨折的护理诊断与处理
- 2025年新疆生产建设兵团中考招生考试数学真题试卷(真题+答案)
- 《社会财务共享服务实务》课件-企业设立、变更、注销
- 【1500吨年产量的对氯苯甲醛合成工艺设计8700字(论文)】
- 2025年河北廊坊市直事业单位招聘工作人员256人笔试历年典型考题及考点剖析附带答案详解
- 2025年医学综合素质考试题及答案
- 电大市场营销试题及答案
- 浙江省台州市2024-2025学年高一下学期6月期末质量评估物理试卷(图片版含答案)
- 《半年护理工作回顾与改进》课件
- 2025年营销管理课程考试试卷及答案
- 徐州市教师业务能力测试题库(数学)
- 沥青路面施工质量控制经验与技术交流培训PPT(126页图文并茂)
- 送达地址确认书(法院最新版)
- 离散数学英文讲义:1-3 Predicates and Quantifiers
评论
0/150
提交评论