郑州市数学难点十二 推理与新定义问题C卷_第1页
郑州市数学难点十二 推理与新定义问题C卷_第2页
郑州市数学难点十二 推理与新定义问题C卷_第3页
郑州市数学难点十二 推理与新定义问题C卷_第4页
郑州市数学难点十二 推理与新定义问题C卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、郑州市数学难点十二 推理与新定义问题C卷姓名:_ 班级:_ 成绩:_一、 单选题 (共12题;共24分)1. (2分) 在复平面内,复数(i是虚数单位)所对应的点位于( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) 数列的前项和为 , 已知 , 则的值为( )A . 0B . 1C . 0.5D . 1.53. (2分) 已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则。若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若的中心为M , 四面体内部一点O到四面体各面的距离都相等”,则( )A . 1B . 2C

2、. 3D . 44. (2分) 下列元素中属于集合A=(x,y)|x= ,y= ,kZ的是( ) A . B . C . (3,4)D . (4,3)5. (2分) (2017高二下海淀期中) 为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进行问卷调查调查结果显示这三名同学来自不同的年级,加入了不同的三个社团:“楹联社”、“书法社”、“汉服社”,还满足如下条件:甲同学没有加入“楹联社”;乙同学没有加入“汉服社”;加入“楹联社”的那名同学不在高二年级;加入“汉服社”的那名同学在高一年级;乙同学不在高三年级试问:丙同学所在的社团是( )A . 楹联社B . 书法社C . 汉服社D

3、. 条件不足无法判断6. (2分) 有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是 ( )A . 甲B . 乙C . 丙D . 丁7. (2分) 对实数a和b,定义运算“”: 设函数 , 若函数y=f(x)-c的图像与x轴恰有两个公共点,则实数c的取值范围是( )A . B . C . D . 8. (2分) (2017高三上浦东期中) 下列四个命题中正确是( ) A . 函数y=ax(a0且a1)与函数 (a0且a1)的值域相同B .

4、 函数y=与y=的值域相同C . 函数 与 都是奇函数D . 函数y=与y=2x1在区间0,+)上都是增函数9. (2分) (2019高一上会宁期中) 定义运算: ,则函数 的值域为( ) A . RB . (0,)C . 1,)D . (0,110. (2分) 已知函数 是R上的增函数,则 的取值范围是( ) A . B . C . D . 11. (2分) 已知 , , (其中e是自然对数的底),则( )A . abcB . bcaC . cbaD . cab12. (2分) 下列函数中,既是偶函数又存在零点的是A . y=COSxB . y=SINxC . y=lnxD . y=+1二、

5、 填空题 (共5题;共5分)13. (1分) 已知函数f(x)的定义域为R,且f(x)不为常值函数,有以下命题:函数g(x)=f(x)+f(x)一定是偶函数;若对任意xR都有f(x)+f(2x)=0,则f(x)是以2为周期的周期函数;若f(x)是奇函数,且对于任意xR,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(nZ);对于任意的x1 , x2R,且x1x2 , 若0恒成立,则f(x)为R上的增函数,其中所有正确命题的序号是_14. (1分) (2017高一下静海期末) 设数列an满足a1=1,且an+1an=n+1(nN*),则数列 的前10项的和为_ 15.

6、 (1分) (2019高一上银川期中) 定义在 上的偶函数 满足:对任意的 ,有 ,且 ,则不等式 的解集是_ 16. (1分) 已知角的终边经过点M(2,3),则sin=_17. (1分) (2017高一下池州期末) 等差数列an前n项和为Sn , 已知a1=13,S3=S11 , n为_时,Sn最大 三、 解答题 (共1题;共5分)18. (5分) (2018高一下石家庄期末) 已知等比数列 满足 , ,且 , , 为等差数列. (1) 求数列 的通项公式; (2) 若 , ,对任意正整数 , 恒成立,试求 的取值范围. 四、 综合题 (共2题;共20分)19. (10分) (2017高二

7、下河口期末) 已知函数 (1) 若函数 在 上单调递减,在 上单调递增,求实数 的值; (2) 是否存在实数 ,使得 在 上单调递减,若存在,试求 的取值范围;若不存在,请说明理由; (3) 若 ,当 时不等式 有解,求实数 的取值范围. 20. (10分) (2020汨罗模拟) 已知等差数列 的前n项和为 ,公差d为整数, ,且 , , 成等比数列. (1) 求数列 的通项公式; (2) 设数列 满足 ,求数列 的前n项和 . 第 8 页 共 8 页参考答案一、 单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论