




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,二阶常系数非齐次线性方程,二阶常系数非齐次线性方程,对应齐次方程,通解结构,常见类型,难点:如何求特解?,方法:待定系数法.,一、 型, 为实数 ,设特解为,其中 为待定多项式 ,代入原方程 , 得,(1) 若 不是特征方程的根,则取,从而得到特解,形式为,为 m 次多项式 .,Q (x) 为 m 次待定系数多项式,(2) 若 是特征方程的单根 ,为m 次多项式,故特解形式为,(3) 若 是特征方程的重根 ,是 m 次多项式,故特解形式为,即,即,综上讨论,注意,上述结论可推广到n阶常系数非齐次线性微分方程(k是重根次数).,例.,的一个特解.,解: 本题,而特征方程为,不是特征方程的根 .
2、,设所求特解为,代入方程 :,比较系数, 得,于是所求特解为,解,对应齐次方程通解,特征方程,特征根,代入方程, 得,原方程通解为,例1,例2.,的通解.,解: 本题,特征方程为,其根为,对应齐次方程的通解为,设非齐次方程特解为,比较系数, 得,因此特解为,代入方程得,所求通解为,例3. 求解定解问题,解: 本题,特征方程为,其根为,设非齐次方程特解为,代入方程得,故,故对应齐次方程通解为,原方程通解为,由初始条件得,于是所求解为,解得,二、,第二步 求出如下两个方程的特解,分析思路:,第一步 将 f (x) 转化为,第三步 利用叠加原理求出原方程的特解,第四步 分析原方程特解的特点,利用欧拉
3、公式,第一步,利用欧拉公式将 f (x) 变形,第二步 求如下两方程的特解,是特征方程的 k 重根 ( k = 0, 1),故,等式两边取共轭 :,为方程 的特解 .,据,则 有,特解:,第三步 求原方程的特解,据叠加原理, 原方程有特解 :,原方程,均为 m 次多项式 .,第四步 分析,因,均为 m 次实,多项式 .,本质上为实函数 ,小 结:,对非齐次方程,则可设特解:,其中,为特征方程的 k 重根 ( k = 0, 1),上述结论也可推广到高阶方程的情形.,例.,的一个特解 .,解:,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数 , 得,于是求得一个特解,例.,的通解.,
4、解:,特征方程为,其根为,对应齐次方程的通解为,比较系数, 得,因此特解为,代入方程:,所求通解为,为特征方程的单根 ,因此设非齐次方程特解为,例6.,解: (1) 特征方程,有二重根,所以设非齐次方程特解为,(2) 特征方程,有根,利用叠加原理 , 可设非齐次方程特解为,设下列高阶常系数线性非齐次方程的特解形式:,练习、求微分方程,的通解 (其中,为实数 ) .,解: 特征方程,特征根:,对应齐次方程通解:,时,代入原方程得,故原方程通解为,时,代入原方程得,故原方程通解为,2. 已知二阶常微分方程,有特解,求微分方程的通解 .,解: 将特解代入方程得恒等式,比较系数得,故原方程为,对应齐次方程通解:,原方程通解为,三、小结,(待定系数法),思考,写出微分方程,的待定特解的形式.,思考解答,设 的特解为,设 的特解为,则所求特解为,特征根,(重根),练习,时可设特解为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临床类求职考试题及答案
- 2025年湖北省文明交通竞赛题库
- 2025年分数化小数竞赛题库
- 2025年小孩肺炎试题及答案
- 2025年ai大厂面试题及答案
- 2025年科技创新知识竞赛题库及答案
- 化工总控工高级考试题库及答案
- 2025年高数上试题及答案
- 2025年创青春冬奥知识竞赛题库
- 2025年国药新冠肺炎试题及答案
- 2025年湖南省体育局直属事业单位招聘考试笔试试题(含答案)
- 汽车更换发动机合同协议
- 广东省省实、二中、执信、广雅、六中2024-2025学年高一下期末联考语文试题及答案
- 生物医药研发股东风险共担协议书
- 出口管制介绍课件
- 兰州噪音污染管理办法
- 2025 创伤救护四大技术(止血 包扎 固定 搬运)课件
- 艾梅乙信息安全管理制度
- 2025年北京市各区中考语文二模卷【议论文阅读题】汇集练附答案解析
- 2025年武汉市汉阳区社区干事岗位招聘考试笔试试题(含答案)
- 氢气安全使用技术规程
评论
0/150
提交评论