



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.1.1.1 根式一、内容及其解析(一)内容:根式。(二)解析:本节课要学的内容有根式理解它关键就是理解次方根概念及次方根的性质并学会或化简根指数为正整数时的根式。学生已经学过了整数次幂的概念和运算性质,数的平方根、立方根的概念,以及二次根式的性质,本节课的内容根式就是在此基础上的发展。由于它还与分数指数幂有必要的联系,所以在本学科有着比较重要的地位,是学习后面知识的基础,是本学科的一般内容内容。教学的重点是利用次方根的性质化简次根式,所以解决重点的关键是在练习中加深理解。二、目标及其解析(一)教学目标1理解次方根概念及次方根的性质;2学会或化简根指数为正整数时的根式;(二)解析1 理解次方
2、根概念及次方根的性质就是指通过复习初中学过的整数次幂的概念和运算性质,数的平方根、立方根的概念,以及二次根式的性质理解次方根概念及次方根的性质;2学会或化简根指数为正整数时的根式就是指要合理运算两个公式:和.三、问题诊断分析在本节课的教学中,学生可能遇到的问题是次根式的性质及应用,产生这一问题的原因是:学生在解题的时候总是忘记分析的奇偶性。要解决这一问题,就要在在练习中加深理解。四、教学过程设计1、提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教
3、师指示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比比方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广、相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维。讨论结果:(1)若,则叫做的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为,负数没有平方根,同理,若,则叫做的立方根,一个数的立方根只有一个。(2)类比平方根、立方根的定义,得到相应的结果。(3)类比(2)得到一个数的次方等于,则这个数叫的次方根。(4)用一个式子表达是,若,则叫做的次方根。教师板书次方根的意义:一般地,如果,则叫做的次方根
4、,其中。2、提出问题(1)你能根据n次方根的意义求出下列数的n次方根吗?教师板书于黑板4的平方根;8的立方根;16的4次方根;32的5次方根;-32的5次方根;0的7次方根;的立方根。(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点? 4,8,16,-32,32,0,分别对应什么性质的数,有什么特点?(3)问题(2)中,既然方根有奇次的也有偶次的,数有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数的n次方根,就是求出的那个数的n次方等于,及时点拨
5、学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路。讨论结果:(1)因为2的平方等于4,2的立方等于8,2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,的立方等于,所以4的平方根,8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,的立方根分别是2,2,2,2,-2,0,。(2)方根的指数是2,3,4,5,7特点是有奇数和偶数。总的来看,这些数包括正数,负数和零。(3)一个数的奇次方根只有一个,一个正数的偶次方根有两
6、个,是互为相反数。0的任何次方根都是0。(4)任何一个数的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数。类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:当n为偶数时,的n次方根有两个,是互为相反数,正的n次方根用表示,如果是负数,负的n次方根用-表示,正的n次方根与负的n次方根合并写在(0)。n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时的n次方根和符号表示。负数没有偶次方根;0的任何次方根都是零.活动:让学生举例说明上述几种情况,教师巡视,及时纠正学生在举例过程中的问题.思考表示的n次方根,等式= 一定成立
7、吗?如果不成立,那么等于什么?活动:教师让学生注意讨论n为奇偶数和的符号,充分让学生多举例,分组讨论,教师点拨,注意归纳整理.结论:n为奇数,= ,当n为偶数三概念的巩固和应用例1、求下列各式的值(1) ; ;解:(1); ;点评:不注意n的奇偶对式子的值影响,是导致问题出现的一个重要原因,要在理解的基础之上,记准,记熟,会用.变式训练:例2、求下列各式的值 拓展提升问题:与哪个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.通过归纳,得出问题结果,对是正数和零,n为偶数时,n为奇数时讨论一下,再对是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.4、课堂小结五小结我们今天主要学习了哪些内容?如果,如果,则叫做的次方根,其中。用式子表示,式子叫根式,其中叫被开方数,n叫根指数.说明:(1) 当n为偶数时,的n次方根有两个,是互为相反数,正的n次方根用表示,如果是负数,负的n次方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届新疆维吾尔自治区且末县第二中学高二物理第二学期期末经典模拟试题含解析
- 2025届北京师大第二附中高二物理第二学期期末联考模拟试题含解析
- 2025年广东省汕头潮阳区物理高二第二学期期末预测试题含解析
- 2025届福建省龙岩市连城一中物理高二第二学期期末经典模拟试题含解析
- 冠心病防治健康教育课件
- 宠物日常护理课件
- 2025届四川省绵阳市绵阳中学物理高二第二学期期末学业水平测试试题含解析
- 二零二五年度多功能仓储中心托盘租赁及仓储管理服务协议
- 2025年班班通教育资源共享平台建设合同
- 2025版旅游产业人民币担保书
- 施工单位项目商务策划模板
- 火电厂基本建设程序与设计内容深度介绍
- 上消化道出血疑难病例讨论课件
- 古诗词九宫格题目课件
- 保险行业管理会计sap方案
- 中医外科医生面试问题及答案
- 硝酸银安全技术说明书MSDS
- 2023年中国港湾公开招聘笔试参考题库附带答案详解
- 服装设计毕业论文-范本4
- 2023年02月2023年中华社会救助基金会招考聘用人员笔试题库含答案解析
- 工程费率招标文件模板
评论
0/150
提交评论