三年高考(2020)高考数学试题分项版解析 专题20 圆锥曲线的综合问题 理(含解析)(通用)_第1页
三年高考(2020)高考数学试题分项版解析 专题20 圆锥曲线的综合问题 理(含解析)(通用)_第2页
三年高考(2020)高考数学试题分项版解析 专题20 圆锥曲线的综合问题 理(含解析)(通用)_第3页
三年高考(2020)高考数学试题分项版解析 专题20 圆锥曲线的综合问题 理(含解析)(通用)_第4页
三年高考(2020)高考数学试题分项版解析 专题20 圆锥曲线的综合问题 理(含解析)(通用)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题20 圆锥曲线的综合问题 考纲解读明方向考点内容解读要求常考题型预测热度曲线与方程了解方程的曲线与曲线的方程的对应关系了解解答题分析解读1.了解解析几何的基本思想和研究几何问题的方法坐标法.2.理解轨迹的概念.能够根据所给条件选择适当的直角坐标系,运用求轨迹方程的常用方法(如:直接法、代入法、定义法、待定系数法、参数法、交轨法等)求轨迹方程.3.本节在高考中以求曲线的方程和研究曲线的性质为主,分值约为12分,属中高档题.考点内容解读要求常考题型预测热度1.定值与最值及范围问题掌握与圆锥曲线有关的最值、定值、参数范围问题掌握解答题2.存在性问题了解并掌握与圆锥曲线有关的存在性问题掌握解答题分

2、析解读1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重对数学思想方法的考查,分值约为12分,难度偏大.2020年高考全景展示1【2020年江苏卷】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P若直线l与椭圆C有且

3、只有一个公共点,求点P的坐标;直线l与椭圆C交于两点若的面积为,求直线l的方程【答案】(1)椭圆C的方程为;圆O的方程为(2)点P的坐标为;直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.(2)设直线l与圆O相切于,则,所以直线l的方程为,即由,消去y,得(*)因为直线l与椭圆C有且只有一个公共点,所以

4、因为,所以因此,点P的坐标为因为三角形OAB的面积为,所以,从而设,由(*)得,所以因为,所以,即,解得舍去),则,因此P的坐标为综上,直线l的方程为点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.2【2020年理新课标I卷】设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.【答案】(1) AM的方程为或.(2)证明见解析.【解析】分析:(1)首先根据与轴垂直,且过点,求得直线l的方程为x

5、=1,代入椭圆方程求得点A的坐标为或,利用两点式求得直线的方程;(2)当l与x轴重合时,.当l与x轴垂直时,OM为AB的垂直平分线,所以.当l与x轴不重合也不垂直时,设l的方程为,则,直线MA,MB的斜率之和为.由得.将代入得.所以,.则.从而,故MA,MB的倾斜角互补,所以.综上,.点睛:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后

6、韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.2020年高考全景展示1.【2020课标1,理20】已知椭圆C:(ab0),四点P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为1,证明:l过定点.【解析】试题分析:(1)根据,两点关于y轴对称,由椭圆的对称性可知C经过,两点.另外知,C不经过点P1,所以点P2在C上.因此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B的斜率分别为k1,k2,在设直线l的方程,当l与

7、x轴垂直,通过计算,不满足题意,再设设l:(),将代入,写出判别式,韦达定理,表示出,根据列出等式表示出和的关系,判断出直线恒过定点.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,).则,得,不符合题设.从而可设l:().将代入得由题设可知.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.而.由题设,故.即.解得.当且仅当时,欲使l:,即,所以l过定点(2,)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一

8、方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简.2.【2020课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。(1) 求点P的轨迹方程;(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F。 【答案】(1) 。(2)证明略。【解析】试题分析:(1)设出点P的坐标,利用得到点P与点,M坐标之间的关系即可求得轨迹方程为。(2)利用

9、可得坐标关系,结合(1)中的结论整理可得,即,据此即可得出题中的结论。试题解析:(1)设,设, 。由得。因为在C上,所以。因此点P的轨迹方程为。(2)由题意知。设,则,。由得,又由(1)知,故。所以,即。又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线过C的左焦点F。【考点】 轨迹方程的求解;直线过定点问题。【名师点睛】求轨迹方程的常用方法有:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)0。(2)待定系数法:已知所求曲线的类型,求曲线方程。(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程。(4)代入(相关点)法:动点P(x,y

10、)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程。3.【2020山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【答案】(I).()的最大值为,取得最大值时直线的斜率为.进一步求得直线的方程并与椭圆方程联立,确定得到的表达式,研究其取值范围.这个过程中,可考虑利用换元思想,应用二次函数的性质及基本不等式.试题解析:(I)由题意知 ,所以 ,因此 椭圆的方程为.()设

11、,联立方程得,由题意知,且,所以 .由题意可知圆的半径为由题设知,所以因此直线的方程为.联立方程得,因此 .由题意可知 ,而,令,则,因此 ,当且仅当,即时等号成立,此时,所以 ,因此,所以 最大值为.综上所述:的最大值为,取得最大值时直线的斜率为.【考点】1.椭圆的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答此类题目,利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法-如二次函数的

12、性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出.本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.4.【2020北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.()求抛物线C的方程,并求其焦点坐标和准线方程;()求证:A为线段BM的中点.【答案】()方程为,抛物线C的焦点坐标为(,0),准线方程为.()详见解析.【解析】()由题意,设直线l的方程为(),l与抛物线C的交点为,.由,得.则,.因为点P的坐标为(1

13、,1),所以直线OP的方程为,点A的坐标为.直线ON的方程为,点B的坐标为.因为,所以.故A为线段BM的中点.【考点】1.抛物线方程;2.直线与抛物线的位置关系【名师点睛】本题考查了直线与抛物线的位置关系,考查了转换与化归能力,当看到题目中出现直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条件中突显的或隐含的等量关系,把这种关系“翻译”出来,有时不一定要把结果及时求出来,可能需要整体代换到后面的计算中去,从而减少计算量.2020年高考全景展示1.【2020高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆

14、A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【答案】()()(II)【解析】试题分析:根据可知轨迹为椭圆,利用椭圆定义求方程;(II)分斜率是否存在设出直线方程,当直线斜率存在时设其方程为,根据根与系数的关系和弦长公式把面积表示为x斜率k的函数,再求最值.试题解析:()因为,故,所以,故.又圆的标准方程为,从而,所以.由题设得,由椭圆定义可得点的轨迹方程为:().()当与轴不垂直时,设的方程为,.由得.则,.所以.过点且

15、与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为.当与轴垂直时,其方程为,四边形的面积为12.综上,四边形面积的取值范围为.考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.2.【2020高考山东理数】(本小题满分14分)平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.(I)求椭圆C的方程

16、;(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.【答案】();()(i)见解析;(ii)的最大值为,此时点的坐标为【解析】试题分析:()根据椭圆的离心率和焦点求方程;()(i)由点P的坐标和斜率设出直线l的方程和抛物线联立,进而判断点M在定直线上;(ii)分别列出,面积的表达式,根据二次函数求最值和此时点P的坐标.试题解析:()由题意知,可得:.因为抛物线的焦点为,所以,所以椭圆C

17、的方程为.()(i)设,由可得,所以直线的斜率为,因此直线的方程为,即.设,联立方程得,由,得且,因此,将其代入得,因为,所以直线方程为.联立方程,得点的纵坐标为,即点在定直线上.(ii)由(i)知直线方程为,令得,所以,又,所以,所以,令,则,当,即时,取得最大值,此时,满足,所以点的坐标为,因此的最大值为,此时点的坐标为.考点:1.椭圆、抛物线的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答此类题目,利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二

18、次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法-如二次函数的性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出.本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.3.【2020年高考北京理数】(本小题14分)已知椭圆C: ()的离心率为 ,的面积为1.(1)求椭圆C的方程;(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.求证:为定值.【答案】(1);(2)详见解析.【解析】试题分析:(1)根据离心率为,即,的面积为1,即,椭圆中列方程求解;(2)根据已知条件分别求出,的值,求其乘积为定值.试题解析:(1

19、)由题意得解得.所以椭圆的方程为.(2)由()知,设,则.当时,直线的方程为.令,得.从而.直线的方程为.令,得.从而.所以.当时,所以.综上,为定值.考点:1.椭圆方程及其性质;2.直线与椭圆的位置关系.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.4. 【2020年高考四川理数】(本小题满分13分)已知椭圆E:的两个焦点与短轴的一个端点是直角三角形

20、的三个顶点,直线与椭圆E有且只有一个公共点T.()求椭圆E的方程及点T的坐标;()设O是坐标原点,直线l平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P证明:存在常数,使得,并求的值.【答案】(),点T坐标为(2,1);().【解析】试题解析:(I)由已知,即,所以,则椭圆E的方程为.由方程组 得.方程的判别式为,由,得,此方程的解为,所以椭圆E的方程为.点T坐标为(2,1).(II)由已知可设直线 的方程为,有方程组 可得所以P点坐标为( ),.设点A,B的坐标分别为 .由方程组 可得.方程的判别式为,由,解得.由得.所以 ,同理,所以.故存在常数,使得.考点:椭圆的标准方程及其

21、几何性质.【名师点睛】本题考查椭圆的标准方程及其几何性质,考查学生的分析问题解决问题的能力和数形结合的思想.在涉及到直线与椭圆(圆锥曲线)的交点问题时,一般都设交点坐标为,同时把直线方程与椭圆方程联立,消元后,可得,再把用表示出来,并代入刚才的,这种方法是解析几何中的“设而不求”法可减少计算量,简化解题过程5.【2020高考新课标3理数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.【答案】()见解析;()【解析】试题分析:()设出与轴垂直的两条直线,然后得出的坐标,然后通过证明直线与直线的斜率相等即可证明结果了;()设直线与轴的交点坐标,利用面积可求得,设出的中点,根据与轴是否垂直分两种情况结合求解()设与轴的交点为,则.由题设可得,所以(舍去),.设满足条件的的中点为.当与轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论