




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题07导数的应用考纲解读明方向考点内容解读要求常考题型预测热度1.导数与函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)理解选择题解答题2.导数与函数的极(最)值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)掌握解答题3.生活中的优化问题会利用导数解决某些实际问题掌握选择题分析解读1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最
2、高等实际生产、生活中的优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为1217分,属于高档题.命题探究练扩展2020年高考全景展示1【2020年理数天津卷】已知函数,其中a1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点 处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】()单调递减区间,单调递增区间为;()证明见解析;()证明见解析.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结
3、合函数的性质可知存在唯一的x0,且x00,使得,据此可证得存在实数t,使得,则题中的结论成立. 详解:(I)由已知,有.令,解得x=0.由a1,可知当x变化时,的变化情况如下表:x00+极小值所以函数的单调递减区间,单调递增区间为.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,使得l1和l2重合.即只需证明当时,方程组有解,由得,代入,得. 因此,只需证明当时,关于x1的方程存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,故存在唯一的x0,且x00,使得,即.由此可得在上单调
4、递增,在上单调递减. 在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系 (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数 (3)利用导数求函数的最值(极值),解决生
5、活中的优化问题 (4)考查数形结合思想的应用2【2020年理北京卷】设函数=()若曲线y= f(x)在点(1,)处的切线与轴平行,求a;()若在x=2处取得极小值,求a的取值范围【答案】(1) a的值为1 (2) a的取值范围是(,+)【解析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围详解:解:()因为=,所以f (x)=2ax(4a+1)ex+ax2(4a+1)x+4a+3ex(xR)=ax2(2a+1)x+2exf (1)=(1a)e由题设知f (1)=0,即(1a)e=0,解得a=1此时f (
6、1)=3e0所以a的值为1点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.3【2020年江苏卷】记分别为函数的导函数若存在,满足且,则称为函数与的一个“S点”(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由【答案】(1)证明见解析(2)a的值为(3)对任意a0,存在b0,使函数f(x)与g(x)在区间(0,+)内存在“S点”【解析】分析:(1)根
7、据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合 “S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f(x)=1,g(x)=2x+2由f(x)=g(x)且f(x)= g(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点(2)函数,则设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f(x0)与g(x0),得,即,(*)得,即,则当时,满足方程组(*),即为f(x)与g(x)的“S”点因此,a的值为(
8、3)对任意a0,设因为,且h(x)的图象是不间断的,所以存在(0,1),使得,令,则b0函数,则由f(x)与g(x)且f(x)与g(x),得,即(*)此时,满足方程组(*),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”因此,对任意a0,存在b0,使函数f(x)与g(x)在区间(0,+)内存在“S点”点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.4【2020年理新课标I卷】
9、已知函数(1)讨论的单调性;(2)若存在两个极值点,证明:【答案】(1)当时,在单调递减.,当时, 在单调递减,在单调递增.(2)证明见解析.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就
10、是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.2020年高考全景展示1.【2020课标II,理11】若是函数的极值点,则的极小值为( )A. B. C. D.1【答案】A【解析】试题分析:由题可得因为,所以,故令,解得或,所以在单调递增,在单调递减所以极小值为,故选A。【考点】 函数的极值;函数的单调性【名师点睛】(1)可导函数yf(x)在点x0处取得极值的充要条件是f(x0)0,且在x0左侧与右侧f(x)的符号不同。(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)
11、内绝不是单调函数,即在某区间上单调增或减的函数没有极值。2.【2020浙江,7】函数y=f(x)的导函数的图像如图所示,则函数y=f(x)的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间3.【2020课标II,理】已知函数,且。(1)求;(2)证明:存在唯一的极大值点,且。【答案】(1);(2)证明略。【解析】试题分
12、析:(1)利用题意结合导函数与原函数的关系可求得,注意验证结果的正确性;(2)结合(1)的结论构造函数,结合的单调性和的解析式即可证得题中的不等式。试题解析:(1)的定义域为。设,则,等价于。因为,因,而,得。若,则。当时,单调递减;当时,单调递增。所以是的极小值点,故综上,。(2)由(1)知 ,。设,则。当 时, ;当 时, ,所以 在 单调递减,在 单调递增。又, ,所以 在 有唯一零点,在 有唯一零点1,且当 时, ;当 时, ,当 时, 。因为 ,所以是的唯一极大值点。由得,故。 由 得 。因为是在(0,1)的最大值点,由, 得。 所以。【考点】 利用导数研究函数的单调性;利用导数研究
13、函数的极值【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系。 (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数。 (3)利用导数求函数的最值(极值),解决生活中的优化问题。 (4)考查数形结合思想的应用。4.【2020课标3,理21】已知函数 .(1)若 ,求a的值;(2)设m为整数,且对于任意正整数n ,求m的最小值.【答案】(1) ;(2
14、) 【解析】试题分析:(1)由原函数与导函数的关系可得x=a是在的唯一最小值点,列方程解得 ;(2)利用题意结合(1)的结论对不等式进行放缩,求得,结合可知实数 的最小值为 (2)由(1)知当 时, .令 得 .从而 .故 .而 ,所以 的最小值为 .【考点】 导数研究函数的单调性;导数研究函数的最值;利用导数证明不等式【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、
15、微积分相联系 (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数 (3)利用导数求函数的最值(极值),解决生活中的优化问题 (4)考查数形结合思想的应用5.【2020浙江,20】(本题满分15分)已知函数f(x)=(x)()()求f(x)的导函数;()求f(x)在区间上的取值范围【答案】();()0, 【解析】试题分析:()利用求导法则及求导公式,可求得的导数;()令,解得或,进而判断函数的单调区间,结合区间端点值求解函数的取值范围试题解析:()因为所以=()由解得或因为x()1()()-0+0-f(x)0又,所以f(x)在区间)上的取值范围是【考点】导数的应用【名师点睛】本题主要
16、考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出,有的正负,得出函数的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数极值或最值6.【2020江苏,20】 已知函数有极值,且导函数的极值点是的零点.(极值点是指函数取极值时对应的自变量的值)(1)求关于 的函数关系式,并写出定义域;(2)证明:;(3)若,这两个函数的所有极值之和不小于,求的取值范围.【答案】(1)(2)见解析(3)【解析】解:(1)由,得.当时,有极小值.因为的极值点是的零点.所以,又,故.因为有极值,故有实根
17、,从而,即.时,故在R上是增函数,没有极值;时,有两个相异的实根,.列表如下x+00+极大值极小值故的极值点是.从而,因此,定义域为.(3)由(1)知,的极值点是,且,.从而记,所有极值之和为,因为的极值为,所以,.因为,于是在上单调递减.因为,于是,故.因此a的取值范围为.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.2020年高考全景
18、展示1.【2020高考江苏卷】(本小题满分16分)已知函数.设.(1)求方程的根;(2)若对任意,不等式恒成立,求实数的最大值;(3)若,函数有且只有1个零点,求的值。【答案】(1)0 4(2)1【解析】试题分析:(1)根据指数间倒数关系转化为一元二次方程,求方程根根据指数间平方关系,将不等式转化为一元不等式,再利用变量分离转化为对应函数最值,即的最小值,最后根据基本不等式求最值(2)先分析导函数零点情况:唯一零点,再确定原函数单调变化趋势:先减后增,从而结合图像确定唯一零点必在极值点取得,而,因此极值点必等于零,进而求出的值.本题难点在证明,这可利用反证法:若,则可寻找出一个区间,由结合零点
19、存在定理可得函数存在另一零点,与题意矛盾,其中可取;若,同理可得.试题解析:(1)因为,所以.方程,即,亦即,所以,于是,解得.由条件知.因为对于恒成立,且,所以对于恒成立.而,且,所以,故实数的最大值为4.(2)因为函数只有1个零点,而,所以0是函数的唯一零点.因为,又由知,所以有唯一解.令,则,从而对任意,所以是上的单调增函数,于是当,;当时,.因而函数在上是单调减函数,在上是单调增函数.下证.若,则,于是,又,且函数在以和为端点的闭区间上的图象不间断,所以在和之间存在的零点,记为. 因为,所以,又,所以与“0是函数的唯一零点”矛盾.若,同理可得,在和之间存在的非0的零点,矛盾.因此,.于
20、是,故,所以.考点:指数函数、基本不等式、利用导数研究函数单调性及零点【名师点睛】对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2.【2020高考天津理数】(本小题满分14分)设函数,,其中(I)求的单调区间; (II) 若存在极值点,且,其中,求证:;()设,函数,求证:在区间上的最大值不小于.【答案】()详见解析()详见解析()详见
21、解析【解析】试题分析:()先求函数的导数:,再根据导函数零点是否存在情况,分类讨论:当时,有恒成立,所以的单调增区间为.当时,存在三个单调区间()由题意得,计算可得再由及单调性可得结论()实质研究函数最大值:主要比较,的大小即可,分三种情况研究当时,当时,当时,.试题解析:()解:由,可得.下面分两种情况讨论:(1)当时,有恒成立,所以的单调递增区间为.(2)当时,令,解得,或.当变化时,的变化情况如下表:00单调递增极大值单调递减极小值单调递增所以的单调递减区间为,单调递增区间为,.()证明:设在区间上的最大值为,表示两数的最大值.下面分三种情况同理:(1)当时,由()知,在区间上单调递减,
22、所以在区间上的取值范围为,因此,所以.(2)当时,由()和()知,所以在区间上的取值范围为,因此.(3)当时,由()和()知,所以在区间上的取值范围为,因此.综上所述,当时,在区间上的最大值不小于.考点:导数的运算,利用导数研究函数的性质、证明不等式【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数f(x)的定义域(定义域优先);(2)求导函数f(x);(3)在函数f(x)的定义域内求不等式f(x)0或f(x)0的解集(4)由f(x)0(f(x)0)的解集确定函数f(x)的单调增(减)区间若遇不等式中带有参数时,可分类讨论求得单调区间2由函数f(x)在(a,b)上的单调性,求参数范围问
23、题,可转化为f(x)0(或f(x)0)恒成立问题,要注意“”是否可以取到3.(本小题满分14分)设函数f(x)(x1)exkx2(kR).(1)当k1时,求函数f(x)的单调区间;(2)当k时,求函数f(x)在0,k上的最大值M.【答案】(1)详见解析 (2)详见解析【解析】(1)当k1时,f(x)(x1)exx2,f(x)ex(x1)ex2xxex2xx(ex2),令f(x)0,得x10,x2ln 2,当x变化时,f(x),f(x)的变化如下表:x(,0)0(0,ln 2)ln 2(ln 2,)f(x)00f(x)极大值极小值由表可知,函数f(x)的递减区间为(0,ln 2),递增区间为(,
24、0),(ln 2,).(2)f(x)ex(x1)ex2kxxex2kxx(ex2k),令f(x)0,得x10,x2ln(2k),令g(k)ln(2k)k,k,则g(k)10,所以g(k)在上单调递增.所以g(k)ln 21ln 2ln e0.从而ln(2k)k,所以ln(2k)(0,k).所以当x(0,ln(2k)时,f(x)0;当x(ln(2k),)时,f(x)0;所以Mmaxf(0),f(k)max1,(k1)ekk3.令h(k)(k1)ekk31,则h(k)k(ek3k),令(k)ek3k,则(k)ek3e30.所以(k)在上单调递减,而(1)(e3)0,所以存在x0使得(x0)0,且当
25、k时,(k)0,当k(x0,1)时,(k)0,所以(k)在上单调递增,在(x0,1)上单调递减.因为,h(1)0,所以h(k)0在上恒成立,当且仅当k1时取得“”.综上,函数f(x)在0,k上的最大值M(k1)ekk3.【考点定位】本题考查导数的应用,属于拔高题【名师点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值,属于难题解题时一定要抓住重要字眼“单调区间”,否则很容易出现错误利用导数求函数的单调区间的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间,令,解不等式得的范围就是递减区间求函数在上的最大值与最小值的步骤:求函数在内的极值;将函数的各极值与端点
26、处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值4.【2020高考新课标3理数】设函数,其中,记的最大值为()求;()求;()证明【答案】();();()见解析【解析】试题分析:()直接可求;()分两种情况,结合三角函数的有界性求出,但须注意当时还须进一步分为两种情况求解;()首先由()得到,然后分,三种情况证明试题解析:()()当时,因此, 4分当时,将变形为令,则是在上的最大值,且当时,取得极小值,极小值为令,解得(舍去),()当时,在内无极值点,所以()由()得.当时,.当时,所以.当时,所以.考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性【归纳总结】求三角函数的最值通常分为两步:(1)利用两角和与差的三角公式、二倍角公式、诱导公式将解析式化为形如的形式;(2)结合自变量的取值范围,结合正弦曲线与余弦曲线进行求解5. 【2020高考浙江理数】(本小题15分)已知,函数F(x)=min2|x1|,x22ax+4a2,其中minp,q= (I)求使得等式F(x)=x22ax+4a2成立的x的取值范围;(II)(i)求F(x)的最小值m(a);(ii
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销部操作指南
- 英语重点词汇详解caveat
- 英语小学五年级上册期末试题
- 出租车公司夜间运营安全保障雇佣合同
- 餐饮企业员工劳动合同与工作环境改善
- 企业历史债务排查方案
- 高级专业技术人才标准劳动合同书
- 仓储物流园区厂房股权转让及仓储服务合作协议
- 烟囱拆除工程设计与施工质量保证合同
- 智能办公环境租赁与智慧城市建设合同
- 关心关爱员工心理健康
- 中医药与人工智能融合应用
- 羊水三度污染护理查房课件
- 汽车维修工时收费标准(二类企业)
- 高等物理化学课件
- 酒吧运营管理优化方案
- 真石漆专业施工方案
- 03 35KV无功补偿装置安装施工方案
- 政府采购法考试题库及答案(通用版)
- 重症医学科健康宣教手册
- 留置看护工作个人总结3篇
评论
0/150
提交评论