




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学均值不等式求最值策略陈本平 陈同量 米新生应用平均值不等式求最值时,要把握平均值不等式成立的三个条件“一正二定三相等”。忽略了任何一个条件,就会导致解题失败,若出现问题,又怎样另辟蹊径,寻求新方法来求最值呢?本文提出一些思路。 1. 调整符号,化负为正,使之适合“一正”条件,过第一关 例1. 已知,求函数的最值。解:因为所以故所以 当且仅当,即或时,等号成立,但不合条件,舍去,故当时, 2. 拆添配凑,变动为定,使之适合“二定”条件,过第二关利用均值不等式求最值,变形构造出“定值”是难点,其方法如下:(1)变形法 例2. 求函数的最小值。解:因为所以故 当且仅当,即时,(2)配凑法 例
2、3. 已知,求函数的最小值。解:因为则有所以 当且仅当,即时, 3. 分离常数 例4. 当时,求的最小值。解:因为所以所以 当且仅当,即取等号另一解(舍去)所以(2)倒数法 例5. 若,求函数的最大值。解:因为所以故(5)平方法 例6. 已知,求函数的最大值。解: 由于所以当且仅当时取等号,所以 4. 化归转化,寻求相等,过第三关 例7. 设,求的最小值。解:因为当且仅当,即时取等号所以点评:若与分别利用平均值不等式,再相乘求最值,问题出现在:前后取等条件不一致。 例8. 已知,且,求的最小值。解:因为,且所以 5. “三关”难过,前进受阻,应另辟蹊径(1)利用代数、三角换元 例9. 若a,b为正实数,且,求的最小值。解:因为,且所以可设则 当且仅当,即时取等号,这时,满足,所以(2)引入参数,巧渡难关 例10. 已知,且,求Pxy的最小值。解:设,由已知有所以 欲取等号,当且仅当时,有代入中,此时所以说明:请读者用三角换元解此题,可令(3)利用函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班欢乐六一教育
- 小学生听力课件
- 玫瑰与教育享
- 儿童财商教育课件
- 幼儿园教师常规工作要求
- 幼儿园食堂安全培训知识
- 2025年科技园区场地租赁服务协议
- 2025版新能源汽车采购合同与充电设施建设协议
- 二零二五年度25吨吊车租赁及设备租赁合同
- 2025版影视基地整体租赁及拍摄服务合同
- 2025年深圳市的房屋租赁合同
- 新疆平台经济发展调研报告2025
- 企业安全声明
- 检验科职业暴露培训课件
- 教师职业素养课件教学
- 汽车网销电话邀约话术培训
- 煤矿掘进试题库及答案
- 地坪材料推广活动方案
- 音乐数据分析与用户行为研究-洞察阐释
- 2025至2030中国电子级磷酸行业市场发展分析及市场需求与投资方向报告
- 2024年成都农业科技中心招聘笔试真题
评论
0/150
提交评论