R语言入门数据特征的描述_第1页
R语言入门数据特征的描述_第2页
R语言入门数据特征的描述_第3页
R语言入门数据特征的描述_第4页
R语言入门数据特征的描述_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验目的,实验内容,学习如何应用R软件描述数据特征,1、方法简介 2、应用实例 3、实验作业,第八讲 数据特征的描述, 3 数据分布特征的测度,3.1 集中趋势的测度 3.2 离散程度的测度 3.3 偏态与峰态的测度,学习目标,1. 集中趋势各测度值的计算方法 2. 集中趋势各测度值的特点及应用场合 3. 离散程度各测度值的计算方法 4. 离散程度各测度值的特点及应用场合 偏态与峰态的测度方法 用R计算描述统计量并进行分析,数据分布的特征,数据分布特征的测度,3.1 集中趋势的测度,一. 分类数据:众数 二. 顺序数据:中位数和分位数 三. 数值型数据:均值 四. 众数、中位数和均值的比较,集

2、中趋势 (Central tendency),一组数据向其中心值靠拢的倾向和程度 测度集中趋势就是寻找数据水平的代表值或中心值 不同类型的数据用不同的集中趋势测度值 低层次数据的测度值适用于高层次的测量数据,但高层次数据的测度值并不适用于低层次的测量数据,众数 (mode),出现次数最多的变量值 不受极端值的影响 一组数据可能没有众数或有几个众数 主要用于分类数据,也可用于顺序数据和数值型数据,众数 (不唯一性),无众数 原始数据: 10 5 9 12 6 8,一个众数 原始数据: 6 7 9 8 7 7,多于一个众数 原始数据: 25 28 28 42 36 36,分类数据的众数 (例题分析

3、),解:这里的变量为“饮料品牌”,这是个分类变量,不同类型的饮料就是变量值 在所调查的50人中,购买可口可乐的人数最多,为15人,占总被调查人数的30%,因此众数为“可口可乐”这一品牌,即 Mo可口可乐,顺序数据的众数 (例题分析),解:这里的数据为顺序数据。变量为“回答类别” 甲城市中对住房表示不满意的户数最多,为108户,因此众数为“不满意”这一类别,即 Mo不满意,中位数 (median),排序后处于中间位置上的值,不受极端值的影响 主要用于顺序数据,也可用数值型数据,但不能用于分类数据 各变量值与中位数的离差绝对值之和最小,即,中位数 (位置的确定),原始数据:,顺序数据:,顺序数据的

4、中位数 (例题分析),解:中位数的位置为 300/2150 从累计频数看,中位数在“一般”这一组别中。因此 Me=一般,数值型数据的中位数 (9个数据的算例),【例】:9个家庭的人均月收入数据 原始数据:1500 750 780 1080 850 960 2000 1250 1630 排 序:750 780 850 960 1080 1250 1500 1630 2000 位 置:1 2 3 4 5 6 7 8 9,中位数 1080,数值型数据的中位数 (10个数据的算例),【例】:10个家庭的人均月收入数据 排 序: 660 750 780 850 960 1080 1250 1500 16

5、30 2000 位 置:1 2 3 4 5 6 7 8 9 10,四分位数 (quartile),排序后处于25%和75%位置上的值,不受极端值的影响 主要用于顺序数据,也可用于数值型数据,但不能用于分类数据,四分位数 (位置的确定),原始数据:,顺序数据:,顺序数据的四分位数 (例题分析),解:QL位置= (300)/4 =75 QU位置 =(3300)/4 =225 从累计频数看, QL在“不满意”这一组别中; QU在“一般”这一组别中。因此 QL = 不满意 QU = 一般,数值型数据的四分位数 (9个数据的算例),【例】:9个家庭的人均月收入数据 原始数据: 1500 750 780

6、1080 850 960 2000 1250 1630 排 序: 750 780 850 960 1080 1250 1500 1630 2000 位 置: 1 2 3 4 5 6 7 8 9,数值型数据的四分位数 (10个数据的算例),【例】:10个家庭的人均月收入数据 排 序: 660 750 780 850 960 1080 1250 1500 1630 2000 位 置: 1 2 3 4 5 6 7 8 9 10,均值 (mean),集中趋势的最常用测度值 一组数据的均衡点所在 体现了数据的必然性特征 易受极端值的影响 用于数值型数据,不能用于分类数据和顺序数据,简单均值与加权均值 (

7、simple mean / weighted mean),设一组数据为: x1 ,x2 , ,xn 或各组的组中值为:M1 ,M2 , ,Mk 相应的频数为: f1 , f2 , ,fk,简单均值,加权均值,已改至此!,加权均值 (例题分析),加权均值 (权数对均值的影响),甲乙两组各有10名学生,他们的考试成绩及其分布数据如下 甲组: 考试成绩(x ): 0 20 100 人数分布(f ):1 1 8 乙组: 考试成绩(x): 0 20 100 人数分布(f ):8 1 1,均值 (数学性质),1. 各变量值与均值的离差之和等于零,2. 各变量值与均值的离差平方和最小,调和平均数 (harm

8、onic mean),均值的另一种表现形式 易受极端值的影响 计算公式为,调和平均数 (例题分析),【例】某蔬菜批发市场三种蔬菜的日成交数据如表,计算三种蔬菜该日的平均批发价格,几何平均数 (geometric mean),n 个变量值乘积的 n 次方根 适用于对比率数据的平均 主要用于计算平均增长率 计算公式为,5. 可看作是均值的一种变形,几何平均数 (例题分析),【例】某水泥生产企业1999年的水泥产量为100万吨,2000年与1999年相比增长率为9%,2001年与2000年相比增长率为16%,2002年与2001年相比增长率为20%。求各年的年平均增长率。,年平均增长率114.91%

9、-1=14.91%,几何平均数 (例题分析),【例】一位投资者购持有一种股票,在2000、2001、2002和2003年收益率分别为4.5%、2.1%、25.5%、1.9%。计算该投资者在这四年内的平均收益率,算术平均:,几何平均:,众数、中位数和均值的关系,众数、中位数和均值的特点和应用,众数 不受极端值影响 具有不唯一性 数据分布偏斜程度较大时应用 中位数 不受极端值影响 数据分布偏斜程度较大时应用 均值 易受极端值影响 数学性质优良 数据对称分布或接近对称分布时应用,数据类型与集中趋势测度值,3.2 离散程度的测度,分类数据:异众比率 顺序数据:四分位差 数值型数据:方差及标准差 相对位

10、置的测量:标准分数 相对离散程度:离散系数,离中趋势,数据分布的另一个重要特征 反映各变量值远离其中心值的程度(离散程度) 从另一个侧面说明了集中趋势测度值的代表程度 不同类型的数据有不同的离散程度测度值,异众比率 (variation ratio),1. 对分类数据离散程度的测度 2. 非众数组的频数占总频数的比率 3. 计算公式为,4. 用于衡量众数的代表性,异众比率 (例题分析),解: 在所调查的50人当中,购买其他品牌饮料的人数占70%,异众比率比较大。因此,用“可口可乐”代表消费者购买饮料品牌的状况,其代表性不是很好,四分位差 (quartile deviation),对顺序数据离散

11、程度的测度 也称为四分间距(inter-quantile range) 上四分位数与下四分位数之差 QD = QU QL 反映了中间50%数据的离散程度 不受极端值的影响 用于衡量中位数的代表性,四分位差 (例题分析),解:设非常不满意为1,不满意为2, 一般为3, 满意为 4, 非常满意为5 已知 QL = 不满意 = 2 QU = 一般 = 3 四分位差: QD = QU-QL = 3 2 = 1,极差 (range),一组数据的最大值与最小值之差 离散程度的最简单测度值 易受极端值影响 未考虑数据的分布,R = max(xi) - min(xi),计算公式为,平均差 (mean devi

12、ation),各变量值与其均值离差绝对值的平均数 能全面反映一组数据的离散程度 数学性质较差,实际中应用较少,计算公式为,未分组数据,组距分组数据,平均差 (例题分析),平均差 (例题分析),含义:每一天的销售量平均数相比, 平均相差17台,方差和标准差 (variance and standard deviation),数据离散程度的最常用测度值 反映了各变量值与均值的平均差异 根据总体数据计算的,称为总体方差或标准差;根据样本数据计算的,称为样本方差或标准差,样本方差和标准差 (simple variance and standard deviation),未分组数据:,组距分组数据:,未

13、分组数据:,组距分组数据:,方差的计算公式,标准差的计算公式,样本方差 自由度(degree of freedom),一组数据中可以自由取值的数据的个数 当样本数据的个数为 n 时,若样本均值x 确定后,只有n-1个数据可以自由取值,其中必有一个数据则不能自由取值 例如,样本有3个数值,即x1=2,x2=4,x3=9,则 x = 5。当 x = 5 确定后,x1,x2和x3有两个数据可以自由取值,另一个则不能自由取值,比如x1=6,x2=7,那么x3则必然取2,而不能取其他值 样本方差用自由度去除,其原因可从多方面来解释,从实际应用角度看,在抽样估计中,当用样本方差s2去估计总体方差2时, s

14、2是2的无偏估计量,样本标准差 (例题分析),样本标准差 (例题分析),含义:每一天的销售量与平均数相比, 平均相差21.58台,标准分数 (standard score),1. 也称标准化值 2. 对某一个值在一组数据中相对位置的度量 3. 可用于判断一组数据是否有离群点 4. 用于对变量的标准化处理 5. 计算公式为,标准分数 (性质),均值等于0 2. 方差等于1,标准分数 (性质),z分数只是将原始数据进行了线性变换,它并没有改变一个数据在该组数据中的位置,也没有改变该组数分布的形状,而只是将该组数据变为均值为0,标准差为1。,标准化值 (例题分析),经验法则,经验法则表明:当一组数据

15、对称分布时 约有68%的数据在平均数加减1个标准差的范围之内 约有95%的数据在平均数加减2个标准差的范围之内 约有99%的数据在平均数加减3个标准差的范围之内,切比雪夫不等式 (Chebyshevs inequality ),如果一组数据不是对称分布,经验法则就不再使用,这时可使用切比雪夫不等式,它对任何分布形状的数据都适用 切比雪夫不等式提供的是“下界”,也就是“所占比例至少和多少” 对于任意分布形态的数据,根据切比雪夫不等式,至少有1-1/k2的数据落在k个标准差之内。其中k是大于1的任意值,但不一定是整数,切比雪夫不等式 (Chebyshevs inequality ),对于k=2,3

16、,4,该不等式的含义是 至少有75%的数据落在平均数加减2个标准差的范围之内 至少有89%的数据落在平均数加减3个标准差的范围之内 至少有94%的数据落在平均数加减4个标准差的范围之内,离散系数 (coefficient of variation),1. 标准差与其相应的均值之比 对数据相对离散程度的测度 消除了数据水平高低和计量单位的影响 4. 用于对不同组别数据离散程度的比较 5. 计算公式为,离散系数 (例题分析),【 例 】某管理局抽查了所属的8家企业,其产品销售数据如表。试比较产品销售额与销售利润的离散程度,离散系数 (例题分析),结论: 计算结果表明,v1 0为右偏分布 偏态系数

17、0为左偏分布,偏态系数 (skewness coefficient),根据原始数据计算 根据分组数据计算,偏态系数 (例题分析),偏态系数 (例题分析),结论:偏态系数为正值,但与0的差异不大,说明电脑销售量为轻微右偏分布,即销售量较少的天数占据多数,而销售量较多的天数则占少数,偏态与峰态 (从直方图上观察),按销售量分组(台),结论:1. 为右偏分布 2. 峰态适中,某电脑公司销售量分布的直方图,峰态 (kurtosis),统计学家Pearson于1905年首次提出 数据分布扁平程度的测度 峰态系数=0扁平峰度适中 峰态系数0为尖峰分布,峰态系数 (kurtosis coefficient)

18、,根据原始数据计算 根据分组数据计算,峰态系数 (例题分析),结论:偏态系数为负值,但与0的差异不大,说明电脑销售量为轻微扁平分布,简单统计量,sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计量, sort,order,rank与排序有关, 其它ave,fivenum,mad,quantile,stem等。 aggregate:计算各数据子集的概括统计量,用R计算描述统计量,fivenum package:stats R Documentation Tukey Five-Number Summaries Descriptio

19、n: Returns Tukeys five number summary (minimum, lower-hinge, median, upper-hinge, maximum) for the input data. Usage: fivenum(x, na.rm = TRUE) Arguments: x: numeric, maybe including NAs and +/-Infs. na.rm: logical; if TRUE, all NA and NaNs are dropped, before the statistics are computed. Value: A nu

20、meric vector of length 5 containing the summary information. See boxplot.stats for more details. See Also: IQR, boxplot.stats, median, quantile, range. Examples: fivenum(c(rnorm(100),-1:1/0),quantile package:stats R Documentation Sample Quantiles Description: The generic function quantile produces s

21、ample quantiles corresponding to the given probabilities. The smallest observation corresponds to a probability of 0 and the largest to a probability of 1. Usage: quantile(x, .) # Default S3 method: quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type = 7, .) Arguments: x: numeric

22、vectors whose sample quantiles are wanted. Missing values are ignored. probs: numeric vector of probabilities with values in 0,1.,na.rm: logical; if true, any NA and NaNs are removed from x before the quantiles are computed. names: logical; if true, the result has a names attribute. Set to FALSE for

23、 speedup with many probs. type: an integer between 1 and 9 selecting one of the nine quantile algorithms detailed below to be used. .: further arguments passed to or from other methods. Details: A vector of length length(probs) is returned; if names = TRUE, it has a names attribute. NA and NaN value

24、s in probs are propagated to the result.,Types: quantile returns estimates of underlying distribution quantiles based on one or two order statistics from the supplied elements in x at probabilities in probs. One of the nine quantile algorithms discussed in Hyndman and Fan (1996), selected by type, i

25、s employed. Sample quantiles of type i are defined by Qi(p) = (1 - gamma) xj + gamma xj+1, where 1 = i = 9, (j-m)/n = p (j-m+1)/ n, xj is the jth order statistic, n is the sample size, and m is a constant determined by the sample quantile type. Here gamma depends on the fractional part of g = np+m-j

26、. For the continuous sample quantile types (4 through 9), the sample quantiles can be obtained by linear interpolation between the kth order statistic and p(k): p(k) = (k - alpha) / (n - alpha - beta + 1),where alpha and beta are constants determined by the type. Further, m = alpha + p(1 - alpha - b

27、eta), and gamma = g. *Discontinuous sample quantile types 1, 2, and 3* Type 1 Inverse of empirical distribution function. Type 2 Similar to type 1 but with averaging at discontinuities. Type 3 SAS definition: nearest even order statistic. *Continuous sample quantile types 4 through 9* Type 4 p(k) =

28、k / n. That is, linear interpolation of the empirical cdf. Type 5 p(k) = (k - 0.5) / n. That is a piecewise linear function where the knots are the values midway through the steps of the empirical cdf. This is popular amongst hydrologists.,Type 6 p(k) = k / (n + 1). Thus p(k) = EF(xk). This is used

29、by Minitab and by SPSS. Type 7 p(k) = (k - 1) / (n - 1). In this case, p(k) = modeF(xk). This is used by S. Type 8 p(k) = (k - 1/3) / (n + 1/3). Then p(k) = medianF(xk). The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. Type 9 p(k) = (k - 3/8) /

30、(n + 1/4). The resulting quantile estimates are approximately unbiased if x is normally distributed. Hyndman and Fan (1996) recommend type 8. The default method is type 7, as used by S and by R = 2.0.0, Ivan Frohne and Rob J Hyndman. References: Examples: quantile(x - rnorm(1001)# Extremes the numbe

31、r of levels in a dimension is the number of levels (nlevels() in the corresponding component of INDEX. Note that contrary to S, simplify = TRUE always returns an array, possibly 1-dimensional.,If FUN does not return a single atomic value, tapply returns an array of mode list whose components are the values of the individual calls to

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论