




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.,24.4 弧长和扇形面积 第1课时,.,(1)半径为R的圆,周长是多少?,C=2R,(3)1圆心角所对弧长是多少?,(4)140圆心角所对的弧长是多少?,(2)圆的周长可以看作是多少度的圆心角所对的弧?,n,A,B,O,若设O半径为R,n的圆心角所对的弧长为,.,【例1】制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算如图所示管道的展直长度l(单位:mm,精确到1mm),.,l (mm),答:管道的展直长度为2970mm,因此所要求的展直长度,【解析】由弧长公式,可得弧AB的长,l (mm),.,1.已知弧所对的圆心角为90,半径是4,则弧长为_ 2. 已知一条弧的半径为9,弧
2、长为8 ,那么这条弧所对的圆心角为_. 3. 钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是( ) A. B. C. D.,160,B,.,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫扇形,.,(1)半径为R的圆,面积是多少?,S=R2,(3)1圆心角所对扇形面积是多少?,(2)圆面可以看作是多少度的圆心角所对的扇形?,若设O半径为R, n的圆心角所对的扇形面积为S,则,.,O,比较扇形面积与弧长公式, 用弧长表示扇形面积:,.,1、已知扇形的圆心角为120,半径为2,则这个扇形的面积S扇形=_.,2、已知扇形面积为 ,圆心角为60,则这个扇形的半径R=_,3
3、、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积S扇形=_,.,【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm).,C,D,弓形的面积= S扇- SOAB,提示:,请同学们自己完成.,.,1.如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的横截面面积.(精确到0.01cm).,A,B,D,C,E,弓形的面积= S扇 - SOAB,提示:,.,3.已知扇形的圆心角为30,面积为 ,则这个扇形的半径R=_,2.已知扇形的圆心角为120,半径为2,则这个扇形的面积为_.,6cm,.,1.(南通中考)如图,已知ABCD的对角线BD=4cm,将ABCD绕其对称中心O旋转180,则点D所转过的路径长为( ) A4 cm B3 cm C2 cm D cm 【解析】选C. 点D所转过的路径是以O为圆心OD为半径,圆心角180的弧长。,.,2.(衡阳中考)如图,在 中, 分别以AC、BC为直径画半圆,则图中阴影部分的面积为 (结果保留 ),【解析】,答案: 6 - 4.,.,1.弧长的计算公式l 并运用公式进行计算; 2.扇形的面积公式S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国电脑清洗剂行业市场现状分析及竞争格局与投资发展报告
- 2025至2030中国电抛光钢行业产业运行态势及投资规划深度研究报告
- 2025至2030中国电子游戏广告行业产业运行态势及投资规划深度研究报告
- 2025至2030中国甲基丙烯酸二甲氨基乙酯行业产业运行态势及投资规划深度研究报告
- 2025至2030中国珠宝首饰行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国现场和非现场自动取款机行业市场占有率及投资前景评估规划报告
- 2025至2030中国特种纸行业市场深度研究及发展前景投资可行性分析报告
- 2025至2030中国特殊砂浆行业发展趋势分析与未来投资战略咨询研究报告
- 填充墙砌体培训课件
- 教育科技的研发与应用评价研究
- RoHS及REACH培训材料课件
- 员工宿舍表格模板
- 真需求-打开商业世界的万能钥匙
- 无创眶周抗衰规范
- 暑假假期安全教育(课件)-小学生主题班会
- 2024年1月黑龙江高中学业水平合格考政治试卷真题(含答案详解)
- 供应室护理进修汇报总结
- 储粮害虫与技术和化学防治
- 自适应前照灯控制系统
- 电梯招标文件示范文本
- 上海市安装工程预算定额(2000)工程量计算规则
评论
0/150
提交评论