




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数的对称性,有些函数,其图像有着优美的对称性,,同时又有着优美的对称关系式,1,-3,-1,-2,1,6,5,4,3,2,7,8,(偶函数),Y=F(x)图像关于直线x=0对称,知识回顾,从”形”的角度看,,从”数”的角度看,,F(-x)=F(x),X,Y,1,-3,-1,-2,1,6,5,4,3,2,7,8,f(x)=,f(4-x),f(1)=,f(0)=,f(-2)=,f(310)=,f(6),f(4-310),0,Y=f(x)图像关于直线x=2对称,f(3),f(4),从”形”的角度看,,从”数”的角度看,,x,y,1,f(1+x)=,f(3-x),f(2+x)=,f(2-x),f(x
2、)=,f(4-x),对于任意的x 你还能得到怎样的等式?,从”形”的角度看,,从”数”的角度看,,Y=f(x)图像关于直线x=2对称,1,-3,-1,-2,6,5,4,3,2,7,0,Y,x,1,-3,-1,-2,1,6,5,4,3,2,7,8,x=-1,f(x)=,f(-2-x),思考?若y=f(x)图像关于直线x=-1对称,Y,x,1,-3,-1,-2,1,6,5,4,3,2,7,8,x=-1,f(-1+x)=,f(-1-x),思考?若y=f(x)图像关于直线x=-1对称,f(x)=,f(-2-x),Y,x,1,猜测:若y=f(x)图像关于直线x=a对称,在y=f(x)图像上任取一点P,点
3、P关于直线x=a的对称点P,则有P的坐标应满足y=f(x),也在f(x)图像上,P(x0,f(x0),P,P(2a-x0,f(x0),f(x0)=f(2a-x0),即: f(x)=f(2a-x),x0,2a-x0,y=f(x)图像关于直线x=a对称,(代数证明),求证,已知,y=f(x)图像关于直线x=a对称,f(x)=f(2a-x),在y=f(x)图像上任取一点P,若点P关于直线x=a的对称点P,也在f(x)图像上,P(x0,f(x0),P,P(2a-x0,f(x0),f(x0)=f(2a-x0),f(x)=f(2a-x),x0,2a-x0,y=f(x)图像关于直线x=a对称,(代数证明),
4、已知,求证,y=f(x)图像关于直线x=a对称,则y=f(x)图像关于直线x=a对称,?,f(x)=f(2a-x),P在f(x)的图像上,y=f(x)图像关于直线x=a对称,f(a-x)=f(a+x),y=f(x)图像关于直线x=0对称,特例:a=0,轴对称性,思考? 若y=f(x)满足f(a-x)=f(b+x),则函数图像关于 对称,F(-x)+F(x)=0,y=F(x)图像关于(0,0)中心对称,中心对称性,类比探究,a,从”形”的角度看,,从”数”的角度看,,F(x)+F(2a-x)=0,x,y,o,a,y=F(x)图像关于(a,0)中心对称,从”形”的角度看,,从”数”的角度看,,中心
5、对称性,类比探究,x,2a-x,F(x)+F(2a-x)=0,F(a-x)+F(a+x)=0,x,y,o,a,从”形”的角度看,,从”数”的角度看,,中心对称性,类比探究,a+x,a-x,y=F(x)图像关于(a,0)中心对称,b,a,F(a+x)+F(a-x)=2b,F(x)+F(2a-x)=2b,b,中心对称性,y=F(x)图像关于(a,b)中心对称,类比探究,x,y,o,思考?,(1)若y=f(x)满足f(a-x)+f(b+x)=0,(2)若y=f(x)满足f(a-x)+f(b+x)=2c,则函数图像关于 对称,则函数图像关于 对称, 知识内容:,函数图像的对称性,对称关系式,y=F(x
6、)图像关于x=a轴对称,F(x)=F(2a-x),F(a-x)=F(a+x),y=F(x)图像关于点(a,b)中心对称,F(x)+F(2a-x)=2b,F(a-x)+F(a+x)=2b, 数学思想方法:,1.数形结合,2.由特殊到一般,3.类比思想,知识迁移:,已知对任意x,有f(x+2)=f(-x), 当x 2,3,y=x,求当x -1,0时,f(x)的解析式?,谢谢!,奇函数,F(-x)=-F(x),即:F(-x)+F(x)=0,函数图像关于(0,0)中心对称,-x,x,F(x)+F(2a-x)=0,F(a-x)+F(a+x)=0,函数图像关于(a,0)中心对称,-x,x,a,函数图像关于
7、(a,0)中心对称,F(a+x)+F(a-x)=0,F(x)+F(2a-x)=0,函数图像关于(a,0)中心对称,函数图像关于直线x=0对称,F(-x)=F(x),函数图像关于直线x=a对称,F(a-x)=F(a+x),x=a,F(x)=F(2a-x),函数图像关于(0,0)中心对称,函数图像关于(a,0)中心对称,F(-x)=-F(x),F(a-x)+F(a+x)=0,F(x)+F(2a-x)=0,轴对称,中心对称性,函数 图像关于 轴对称,证明:,(必要性),1,-3,-1,-2,6,5,4,3,2,1,-3,-1,-2,2,1,-3,-1,-2,1,6,5,4,3,2,7,8,思考?若函
8、数 图像关于 轴对称,,有怎样的对称关系式?,函数y=f(x)图像关于x=a轴对称,证明:,(必要性),任取y=f(x)图像上一点P(x0,y0),若点P关于直线x=a的对称点P 也在f(x)图像上,分析:,P(x0,y0),P,P(2a-x0,y0)代入y=f(x),Y0=f(2a-x0),y=f(x)图像上每一点及其关于x=a对称点 都在y=f(x)图像上,则y=f(x)图像上图象关于x=a对称,则由P的任意性可知,?,f(x)=f(2a-x),函数图像关于直线x=0对称,F(-x)=F(x),函数图像关于直线x=a对称,F(a-x)=F(a+x),x=a,F(x)=F(2a-x),函数图像关于(0,0)中心对称,函数图像关于(a,0)中心对称,?,任取y=f(x)图像上一点P(x0,y0),设P是P关于直线x=a的对称点,由f(x)图像关于x=a对称,P也在y=f(x)图像上,P(x0,y0),P,f(2a-x0)=f(x0),即: f(x)=f(2a-x),x0,2a-x0,P(2a-x0,y0),猜测:若f(x)图像关于直线x=a对称,f(x)有怎样的对称关系式?,证明:,y0=f(x0),若P也在f(x)图像上,,(2a-x0, y0),P,P(2a-x0, y0),代入y=f(x),f(2a-x0),=f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冰墩墩课件介绍
- 宣传委员竞选教学课件
- 冬季保健知识课件
- 宣传主题班会课件
- 冠心病防治科普知识
- 2025版拆墙工程施工许可证协议书合同范本
- 2025版工业园区包干制物业管理服务协议
- 二零二五年搬运工工伤免责保障合同模板
- 宝玉石加工技术课件
- 二零二五年度KTV智能灯光音响系统升级改造合同
- 以患者为中心的数字化肿瘤科管理平台建设
- 员工招聘录用流程图(完整版)
- 客户受电工程竣工检验意见书
- 2025-2030中国艾草行业市场发展分析及竞争格局与投资发展研究报告
- 冷却塔维修施工方案设计
- 散装食品销售管理制度
- 论船舶代理人无单放货的法律责任与风险防控
- 综采工作面液压支架安装回撤工职业技能理论考试题库150题(含答案)
- 电气类实验室安全培训
- 场地平整项目承包合同范本
- 船舶修理行业专业实践操作规范
评论
0/150
提交评论